作者 | News
编辑 | 安可
出品 | 磐创AI团队出品
【磐创AI导读】:本篇文章讲解了PyTorch专栏的第一章,简单介绍了PyTorch及其环境搭建,希望对大家有所帮助。查看上篇关于本专栏的介绍:PyTorch专栏开篇。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
专栏目录:
第一章:PyTorch之简介与下载
- PyTorch简介
- PyTorch环境搭建
第二章:PyTorch之60min入门
- PyTorch 入门
- PyTorch 自动微分
- PyTorch 神经网络
- PyTorch 图像分类器
- PyTorch 数据并行处理
第三章:PyTorch之入门强化
- 数据加载和处理
- PyTorch小试牛刀
- 迁移学习
- 混合前端的seq2seq模型部署
- 保存和加载模型
第四章:PyTorch之图像篇
- 微调基于torchvision 0.3的目标检测模型
- 微调TorchVision模型
- 空间变换器网络
- 使用PyTorch进行Neural-Transfer
- 生成对抗示例
- 使用ONNX将模型转移至Caffe2和移动端
第五章:PyTorch之文本篇
- 聊天机器人教程
- 使用字符级RNN生成名字
- 使用字符级RNN进行名字分类
- 在深度学习和NLP中使用Pytorch
- 使用Sequence2Sequence网络和注意力进行翻译
第六章:PyTorch之生成对抗网络
第七章:PyTorch之强化学习
第一章:PyTorch之简介与下载
1 PyTorch简介
要介绍PyTorch之前,不得不说一下Torch。Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库,其特点是特别灵活,但因其采用了小众的编程语言是Lua,所以流行度不高,这也就有PyTorch的出现。所以其实Torch是PyTorch的前身,它们的底层语言相同,只是使用了不同的上层包装语言。
PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由Facebookd的人工智能小组开发,不仅能够实现强大的GPU加速,同时还支持动态神经网络,这一点是现在很多主流框架如TensorFlow都不支持的。PyTorch提供了两个高级功能:
- 具有强大的GPU加速的张量计算(如Numpy)
- 包含自动求导系统的深度神经网络
除了Facebook之外,Twitter、GMU和Salesforce等机构都采用了PyTorch。
TensorFlow和Caffe都是命令式的编程语言,而且是静态的,首先必须构建一个神经网络,然后一次又一次使用相同的结构,如果想要改变网络的结构,就必须从头开始。但是对于PyTorch,通过反向求导技术,可以让你零延迟地任意改变神经网络的行为,而且其实现速度快。正是这一灵活性是PyTorch对比TensorFlow的最大优势。
另外,PyTorch的代码对比TensorFlow而言,更加简洁直观,底层代码也更容易看懂,这对于使用它的人来说理解底层肯定是一件令人激动的事。
所以,总结一下PyTorch的优点:
- 支持GPU
- 灵活,支持动态神经网络
- 底层代码易于理解
- 命令式体验
- 自定义扩展
当然,现今任何一个深度学习框架都有其缺点,PyTorch也不例外,对比TensorFlow,其全面性处于劣势,目前PyTorch还不支持快速傅里叶、沿维翻转张量和检查无穷与非数值张量;针对移动端、嵌入式部署以及高性能服务器端的部署其性能表现有待提升;其次因为这个框架较新,使得他的社区没有那么强大,在文档方面其C库大多数没有文档。
2 PyTorch简介
2.1 安装Anaconda 3.5
Anaconda是一个用于科学计算的Python发行版,支持Linux、Mac和Window系统,提供了包管理与环境管理的功能,可以很方便地解决Python并存、切换,以及各种第三方包安装的问题。
2.1.1 下载:
可以直接从 Anaconda官网下载,但因为Anaconda的服务器在国外,所以下载速度会很慢,这里推荐使用清华的镜像来下载。选择合适你的版本下载,我这里选择Anaconda3-5.1.0-Windows-x86_64.exe
2.1.2 安装
下载之后,点击安装即可,步骤依次如下:
选择你想要存放的位置
安装完成后,进行Anaconda的环境变量配置,打开控制面板->高级系统设置->环境变量->系统变量找到Path,点击编辑,加入三个文件夹的存储路径(注意三个路径之间需用分号隔开),步骤如下:
Anaconda3.5存储路径
Anaconda3.5Librarybin存储路径
Anaconda3.5Scripts存储路径
至此,Anaconda 3.5 windows版就安装设置好了,打开程序找到Anaconda Navigator,启动后可以看到:
Anaconda首页
2.2 安装PyTorch & torchvision
2.2.1 命令获取
进入 PyTorch官网,依次选择你电脑的配置(我这里已经下载了python3.7),这里提供使用pip和conda两种环境下安装的步骤截图
(1)使用pip:windows pip python3.7 None
拷贝给出的命令在cmd下运行
安装成功后检验是否安装成功,打开pycharm运行一个小demo:
检验pytorch是否安装成功
(2)使用conda:windows conda python3.7 None
拷贝给出的命令在cmd下运行
安装完毕后,验证是否安装成功,打开Anaconda的Jupyter新建python文件,运行demo:
出现这个结果,那么恭喜你,至此PyTorch1.0 & Anaconda3.5已经安装成功。