NiftyNet 数据预处理

2019-09-10 18:47:03 浏览数 (1)

NiftyNet项目介绍

使用NiftyNet时,我们需要先将图像数据和标签进行一次简单的处理,得到对应的.csv文件。

对应文件格式为:

img.csv

image

path

img_name

img_path

label.csv

label

path

img_label

img_path

在此给出一个二分类的生成该文件的demo。首先,已经将两个类别的图片分别存储在两个文件夹中

demo

代码语言:javascript复制
import pandas as pd
import os


# 生成 img.csv
list_img = []
list_path = []

img_path = 'C:\Users\fan\Desktop\demo\train\ad'
img_name = os.listdir(img_path)

for i, item in enumerate(img_name):
    list_img.append(item)
    list_path.append(img_path   "\"   item)

img_path = "C:\Users\fan\Desktop\demo\train\cn"
img_name = os.listdir(img_path)
for i, item in enumerate(img_name):
    list_img.append(item)
    list_path.append(img_path   "\"   item)

data_frame = pd.DataFrame({'image': list_img, 'path': list_path})
data_frame.to_csv('C:\Users\fan\Desktop\demo\train\img_path.csv', index=False)

# 生成label.csv

list_label_name = []
list_label_path = []

label_path = 'C:\Users\fan\Desktop\demo\train\ad'
label_name = os.listdir(label_path)

for j, elem in enumerate(label_name):
    list_label_name.append(elem[0:2])
    list_label_path.append(label_path   '\'   elem)

label_path = 'C:\Users\fan\Desktop\demo\train\cn'
label_name = os.listdir(label_path)

for j, elem in enumerate(label_name):
    list_label_name.append(elem[0:2])
    list_label_path.append(label_path   '\'   elem)
print(list_label_name)

label_dataframe = pd.DataFrame({'label': list_label_name, 'path': list_label_path})
label_dataframe.to_csv('C:\Users\fan\Desktop\demo\train\label.csv', index=False)

NiftyNet平台配置介绍

0 人点赞