量价特征因子:基于HMM的多空策略(附代码)

2019-09-16 16:21:38 浏览数 (1)

标星★公众号 爱你们♥

作者:Sergey Malchevskiy

编译:1 1=6 | 公众号海外部

前言

我们通常使用股市的一手数据来创建一个策略模型,预测下一时刻价格的多少、走势的判断或其他。 今天,我们想结合多样的市场条件(波动性,交易量,价格变化等等)和结合隐马尔科夫(HMM)来构建我们的交易策略。

HMM是一个统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。我们的观测数据就是的市场特征,隐藏状态是市场的行为。

我们的目标是解释建模后的隐藏状态,并基于此建立交易策略。

特征工程与模型构建

先导入有关的包:

数据来自quandl:

先看看价格和成交量的走势图:

现在我们开始正式的特征工程和建模:

训练集:01 / 01 / 2018之前。下面的代码有关特征工程:

然后,我们得到了五个新的时间序列和训练模型:

特征序列

在上面的代码中,我们还创建了future_return列,它为last_return移动了一个lag。这是理解隐藏状态的第一个关键。我们把这个值画成每个状态的累加和。

正如我们看到的,状态#0有下降的趋势。状态#1没有一个明确的趋势。最后一个状态#2有强烈的上行趋势。 这个带有累积和future_return的简单技巧使我们能够理解每个状态如何对应下一个价格波动。

第二个关键是通过特征来研究每个状态。在此之后,我们可以将这两个事件(未来走势和当前状态)联系起来。让我们为每个状态的特征编写代码和可视化。

每个状态的特征分布

现在你可以看到每个状态是如何描述当前状态的。例如,状态 #0和#2具有较大的成交量偏差,这意味着这些状态通常呈现在大成交量上,而状态#1呈现在较小的成交量上。此外,状态#0和#2经常表现出高度的波动性。

有趣的是,状态#0的last_return和ma_ratio的值都很低。也许,状态#0对应的是当前的条件(目前)。状态#2的情况是滞后的。

对上面的两个表述,我们可以总结为:

  • 如果市场目前的状态是#0,那么在当前的情况下,我们主要处于下跌的市场状态,而这个趋势将会继续。
  • 如果市场处于当前状态#1,趋势处于不确定性中。
  • 如果市场目前的状态是#2,那么在当前的情况下,我们主要处于上升的市场状态,而这种趋势将会继续。

验证策略

逻辑很简单:

  • 状态为#0时:做空
  • 状态为#1时:空仓
  • 状态为#2时:做多

我们将使用 Catalyst 框架:

初始化函数:

handle_data函数:

analyze函数(绘制图形并打印结果):

运行策略:

正如我们预期的,策略跑赢了基准。如果没有趋势期,则它的结果可能一般。

  • 总收益: 1.49
  • Sortino coef: 1.88
  • Max drawdown: -0.31
  • alpha: 0.57
  • beta: -0.15

总结

如何改进策略:

1、向模型添加新特征。

2、尝试不同窗口长度。

3、建立具有不同隐藏状态数的模型。

4、对策略中的隐藏状态和使用规则做出新的解释。

5、添加简单的交易规则,如止损等。

文章来自:https://twitter.com/TDataScience

—End—

0 人点赞