全连接神经网络(下)
0.说在前面1.Batch Normalization1.1 什么是BN?1.2 前向传播1.3 反向传播2.Dropout2.1 什么是Dropout?2.2 前向传播2.3 反向传播3.任意隐藏层数的全连接网络4.训练模型5.作者的话
0.说在前面
说点感慨的,有人问我为何每日都在分享,从来没有间断过,我只有一个答案,那就是:坚持!
另外,我已经将作业详解新建了一个菜单,可以在公众号里面找到作业详解菜单,里面有之前的所有作业详解!
ok,我们继续来上次cs231n的assignment2的全连接神经网络第二篇。这一篇则重点研究构建任意层数的全连接网络!下面我们一起来实战吧!
1.Batch Normalization
1.1 什么是BN?
什么是Batch Normalization,以及相关的前向传播,反向传播推导,这里给出一个大佬的网址,大家可以自行mark!
Understanding the backward pass through Batch Normalization Layer
简单来说,Batch Normalization就是在每一层的wx b和f(wx b)之间加一个归一化。
什么是归一化,这里的归一化指的是:将wx b归一化成:均值为0,方差为1!
下面给出Batch Normalization的算法和反向求导公式,下图来自于网上上述链接~
1.2 前向传播
前向与后向传播均在layes.py文件内!
其实这里比较好写,原因在于注释提示了很多比如注释里面的:
代码语言:javascript复制running_mean = momentum * running_mean (1 - momentum) * sample_mean
running_var = momentum * running_var (1 - momentum) * sample_var
输入输出:
代码语言:javascript复制输入:
- x: Data of shape (N, D)
- gamma: Scale parameter of shape (D,)
- beta: Shift paremeter of shape (D,)
- bn_param: Dictionary with the following keys:
- mode: 'train' or 'test'; required
- eps: Constant for numeric stability
- momentum: Constant for running mean / variance.
- running_mean: Array of shape (D,) giving running mean of features
- running_var Array of shape (D,) giving running variance of features
返回元组:
- out: of shape (N, D)
- cache: A tuple of values needed in the backward pass
完整实现:
相关公示的注释已经写上,对上述的算法进行实现即可!
代码语言:javascript复制def batchnorm_forward(x, gamma, beta, bn_param):
mode = bn_param['mode']
eps = bn_param.get('eps', 1e-5)
momentum = bn_param.get('momentum', 0.9)
N, D = x.shape
running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
out, cache = None, None
if mode == 'train':
# mini-batch mean miu_B (1,D)
sample_mean = np.mean(x,axis=0,keepdims=True)
# miin-batch variance sigema_square (1,D)
sample_var = np.var(x,axis=0,keepdims=True)
# normalize (N,D)
x_normalize = (x-sample_mean)/np.sqrt(sample_var eps)
# scale and shift
out = gamma*x_normalize beta
cache=(x_normalize,gamma,beta,sample_mean,sample_var,x,eps)
# update
running_mean = momentum * running_mean (1 - momentum) * sample_mean
running_var = momentum * running_var (1 - momentum) * sample_var
elif mode == 'test':
x_normalize = (x-running_mean)/np.sqrt(running_var eps)
out = gamma*x_normalize beta
else:
raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
# Store the updated running means back into bn_param
bn_param['running_mean'] = running_mean
bn_param['running_var'] = running_var
return out, cache
1.3 反向传播
反向传播很重要,而在assignment1中对两层神经网络进行手推,这里是一样的原理,由于自己写的有点乱,就不放手推了,给出网上的推导:
输入输出:
代码语言:javascript复制输入:
- dout: Upstream derivatives, of shape (N, D)
- cache: Variable of intermediates from batchnorm_forward.
返回元组:
- dx: Gradient with respect to inputs x, of shape (N, D)
- dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
- dbeta: Gradient with respect to shift parameter beta, of shape (D,)
完整实现:
这里建议将上述算法与反向传播公式联系起来一起推,最好手推,有一个重要点提一下,就是在对x求导的时候,是层层嵌套,所以采用算法当中的分治法解决,分为多个子问题,链式推导,方便简单,而且不容易出错!
代码语言:javascript复制def batchnorm_backward(dout, cache):
dx, dgamma, dbeta = None, None, None
x_normalized, gamma, beta, sample_mean, sample_var, x, eps = cache
N, D = x.shape
dx_normalized = dout * gamma # [N,D]
x_mu = x - sample_mean # [N,D]
sample_std_inv = 1.0 / np.sqrt(sample_var eps) # [1,D]
dsample_var = -0.5 * np.sum(dx_normalized * x_mu, axis=0, keepdims=True) * sample_std_inv**3
dsample_mean = -1.0 * np.sum(dx_normalized * sample_std_inv, axis=0, keepdims=True) - 2.0 * dsample_var * np.mean(x_mu, axis=0, keepdims=True)
dx1 = dx_normalized * sample_std_inv
dx2 = 2.0/N * dsample_var * x_mu
dx = dx1 dx2 1.0/N * dsample_mean
dgamma = np.sum(dout * x_normalized, axis=0, keepdims=True)
dbeta = np.sum(dout, axis=0, keepdims=True)
return dx, dgamma, dbeta
2.Dropout
2.1 什么是Dropout?
Dropout可以理解为遗抑制过拟合的一种正规化手段!在训练过程中,对每个神经元,以概率p保持它的激活状态。下面给出dropout的示意图:
回答先图b与图a明显的区别是,指向变少了,也就是去掉了很多传递过程,但在实际中不经常用,因为容易去掉一些关键信息!
2.2 前向传播
前向与反向传播在layers.py文件中!
在注释中提到了cs231n的一个关键点,大家可以去下面链接去看什么是dropout:
cs231n直通点
输入输出
代码语言:javascript复制输入:
- x: Input data, of any shape
- dropout_param: A dictionary with the following keys:
- p: Dropout parameter. We keep each neuron output with probability p.
- mode: 'test' or 'train'. If the mode is train, then perform dropout;
if the mode is test, then just return the input.
- seed: Seed for the random number generator. Passing seed makes this
function deterministic, which is needed for gradient checking but not
in real networks.
输出:
- out: Array of the same shape as x.
- cache: tuple (dropout_param, mask). In training mode, mask is the dropout
mask that was used to multiply the input; in test mode, mask is None.
完整实现
具体实现只需要记住一句话,以某一概率失活!!!也就是让当前的数据乘以每个数据的失活概率即可!
代码语言:javascript复制def dropout_forward(x, dropout_param):
p, mode = dropout_param['p'], dropout_param['mode']
if 'seed' in dropout_param:
np.random.seed(dropout_param['seed'])
mask = None
out = None
if mode == 'train':
mask = (np.random.rand(*x.shape) < p) #以某一概率随机失活
out = x * mask
elif mode == 'test':
out=x
cache = (dropout_param, mask)
out = out.astype(x.dtype, copy=False)
return out, cache
2.3 反向传播
输入输出:
代码语言:javascript复制输入:
- dout: Upstream derivatives, of any shape
- cache: (dropout_param, mask) from dropout_forward.
输出:
- dx
完整实现:
实现就是直接上层的梯度乘以当前的梯度,上层梯度为dout,当前梯度为存储的mask。
代码语言:javascript复制def dropout_backward(dout, cache):
dropout_param, mask = cache
mode = dropout_param['mode']
dx = None
if mode == 'train':
dx = dout * mask
elif mode == 'test':
dx = dout
return dx
3.任意隐藏层数的全连接网络
对fc_net.py进行修改!
对于这一块填写,之前一直有点不懂,还好今天重新看了一下注释,觉得很清楚了,建议都去看看注释的todo或者解释,很详细!!!
以这个为例:
首先我们可以看到所构建的全连接网络结构为:
网络的层数为L层,L-1表示重复{blok}L-1次,注释中都有的!
代码语言:javascript复制{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax
输入输出:
为了保持原文意思,这里没有翻译出来,大家克服一下,看英文,如果不懂可以留言!
代码语言:javascript复制 初始化一个新的全连接网络.
输入:
- hidden_dims: A list of integers giving the size of each hidden layer.
- input_dim: An integer giving the size of the input.
- num_classes: An integer giving the number of classes to classify.
- dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then
the network should not use dropout at all.
- normalization: What type of normalization the network should use. Valid values
are "batchnorm", "layernorm", or None for no normalization (the default).
- reg: Scalar giving L2 regularization strength.
- weight_scale: Scalar giving the standard deviation for random
initialization of the weights.
- dtype: A numpy datatype object; all computations will be performed using
this datatype. float32 is faster but less accurate, so you should use
float64 for numeric gradient checking.
- seed: If not None, then pass this random seed to the dropout layers. This
will make the dropout layers deteriminstic so we can gradient check the
model.
下面两行#号中间为填写内容!我们所实现的目标大家可以看TODO,里面说的很详细,我简单说一下,就是来存储w与b,而这个存储的作用,则会在后面的loss用到!
代码语言:javascript复制class FullyConnectedNet(object):
def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,
dropout=1, normalization=None, reg=0.0,
weight_scale=1e-2, dtype=np.float32, seed=None):
self.normalization = normalization
self.use_dropout = dropout != 1
self.reg = reg
self.num_layers = 1 len(hidden_dims)
self.dtype = dtype
self.params = {}
############################################################################
num_neurons = [input_dim] hidden_dims [num_classes]
# 看一开始的时候注释就说了L-1次,所以这里要前去1
for i in range(len(num_neurons) - 1):
self.params['W' str(i 1)] = np.random.randn(num_neurons[i], num_neurons[i 1]) * weight_scale
self.params['b' str(i 1)] = np.zeros(num_neurons[i 1])
# 这里处理的总循环式L-1,i最大为L-2,而batchnormalization只在层与层中间,也就是比如三个结点就只有两个间隔,所以这里是到L-2
if self.normalization=='batchnorm' and i < len(num_neurons) - 2:
self.params['beta' str(i 1)] = np.zeros([num_neurons[i 1]])
self.params['gamma' str(i 1)] = np.ones([num_neurons[i 1]])
############################################################################
self.dropout_param = {}
if self.use_dropout:
self.dropout_param = {'mode': 'train', 'p': dropout}
if seed is not None:
self.dropout_param['seed'] = seed
self.bn_params = []
if self.normalization=='batchnorm':
self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)]
if self.normalization=='layernorm':
self.bn_params = [{} for i in range(self.num_layers - 1)]
# Cast all parameters to the correct datatype
for k, v in self.params.items():
self.params[k] = v.astype(dtype)
目标:
计算全连接网络的损失与梯度
输入输出:
代码语言:javascript复制输入:
- X: Array of input data of shape (N, d_1, ..., d_k)
- y: Array of labels, of shape (N,). y[i] gives the label for X[i].
返回:
If y is None, then run a test-time forward pass of the model and return:
- scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c.
完整实现:
这里的实现思路就是按照上面一开始的注释提到的:
代码语言:javascript复制{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax
下面一起来看:具体代码在两行长#号中间:
下面依此调用affine、batch、relu、dropout的前向传播来实现!紧接着求出loss,最后来调用跟前向传播相对的反向传播来求梯度!
代码语言:javascript复制def loss(self, X, y=None):
X = X.astype(self.dtype)
mode = 'test' if y is None else 'train'
if self.use_dropout:
self.dropout_param['mode'] = mode
if self.normalization=='batchnorm':
for bn_param in self.bn_params:
bn_param['mode'] = mode
scores = None
cache = {}
scores = X
############################################################################
# 前向传播
# {affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax
for i in range(1, self.num_layers 1):
scores, cache['fc' str(i)] = affine_forward(scores, self.params['W' str(i)], self.params['b' str(i)])
# Do not add relu, batchnorm, dropout after the last layer
if i < self.num_layers:
if self.normalization == "batchnorm":
D = scores.shape[1]
# self.bn_params[i-1] since the provided code above initilizes bn_params for layers from index 0, here we index layer from 1.
scores, cache['bn' str(i)] = batchnorm_forward(scores, self.params['gamma' str(i)], self.params['beta' str(i)], self.bn_params[i-1])
scores, cache['relu' str(i)] = relu_forward(scores)
if self.use_dropout:
scores, cache['dropout' str(i)] = dropout_forward(scores, self.dropout_param)
############################################################################
# If test mode return early
if mode == 'test':
return scores
loss, grads = 0.0, {}
############################################################################
# 计算loss
loss, last_grad = softmax_loss(scores, y)
loss = 0.5 * self.reg * sum([np.sum(self.params['W' str(i)]**2) for i in range(1, self.num_layers 1)])
############################################################################
############################################################################
# 反向传播
for i in range(self.num_layers, 0, -1):
if i < self.num_layers: # No ReLU, dropout, Batchnorm for the last layer
if self.use_dropout:
last_grad = dropout_backward(last_grad, cache['dropout' str(i)])
last_grad = relu_backward(last_grad, cache['relu' str(i)])
if self.normalization == "batchnorm":
last_grad, grads['gamma' str(i)], grads['beta' str(i)] = batchnorm_backward(last_grad, cache['bn' str(i)])
last_grad, grads['W' str(i)], grads['b' str(i)] = affine_backward(last_grad, cache['fc' str(i)])
grads['W' str(i)] = self.reg * self.params['W' str(i)]
############################################################################
return loss, grads
4.训练模型
最后,回到FullyConnectedNets.ipynb文件中,依此调用即可,最后填充相应的训练一个好的模型的代码!
代码语言:javascript复制hidden_dims = [100] * 4
range_weight_scale = [1e-2, 2e-2, 5e-3]
range_lr = [1e-5, 5e-4, 1e-5]
best_val_acc = -1
best_weight_scale = 0
best_lr = 0
print("Training...")
for weight_scale in range_weight_scale:
for lr in range_lr:
model = FullyConnectedNet(hidden_dims=hidden_dims, reg=0.0,
weight_scale=weight_scale)
solver = Solver(model, data, update_rule='adam',
optim_config={'learning_rate': lr},
batch_size=100, num_epochs=5,
verbose=False)
solver.train()
val_acc = solver.best_val_acc
print('Weight_scale: %f, lr: %f, val_acc: %f' % (weight_scale, lr, val_acc))
if val_acc > best_val_acc:
best_val_acc = val_acc
best_weight_scale = weight_scale
best_lr = lr
best_model = model
print("Best val_acc: %f" % best_val_acc)
print("Best weight_scale: %f" % best_weight_scale)
print("Best lr: %f" % best_lr)
最终要求的精度在验证集上至少50%!
上面训练后的最好结果为:
代码语言:javascript复制Validation set accuracy: 0.528
Test set accuracy: 0.527