R包reshape2 |轻松实现长、宽数据表格转换

2019-10-24 15:20:07 浏览数 (1)

本文翻译自外文博客,原文链接:

https://seananderson.ca/2013/10/19/reshape/

  • R语言 - 入门环境Rstudio
  • R语言 - 基础概念和矩阵操作

一、reshape2 简介

reshape2是由Hadley Wickham编写的R包,可以轻松地在宽格式(wide-format)和长格式(long-format)之间转换数据。

reshape2R包主要有两个主要的功能:meltcast

  • melt:将wide-format数据“熔化”成long-format数据;
  • cast:获取long-format数据“重铸”成wide-format数据。

这两个命名十分形象,方便记忆,你可以想象成你在处理金属。当你熔化金属成液体滴下时,金属会被拉长(long-format)。如果你把金属它铸成一个模子,它就会变宽(wide-format)。

二、什么是宽表格和长表格

示例数据说明:例子使用内置于R中的空气质量数据集(airquality)。

每个变量单独成一列的为宽数据,例如:

代码语言:javascript复制
##      ozone      wind     temp
## 1 23.61538 11.622581 65.54839
## 2 29.44444 10.266667 79.10000
## 3 59.11538  8.941935 83.90323
## 4 59.96154  8.793548 83.96774

而长数据中变量的ID没有单独列成一列,而是整合在同一列。

长数据矩阵中一列代表变量类型,另外一列表示对用的变量值。例如:

代码语言:javascript复制
##    variable     value
## 1     ozone 23.615385
## 2     ozone 29.444444
## 3     ozone 59.115385
## 4     ozone 59.961538
## 5      wind 11.622581
## 6      wind 10.266667
## 7      wind  8.941935
## 8      wind  8.793548
## 9      temp 65.548387
## 10     temp 79.100000
## 11     temp 83.903226
## 12     temp 83.967742

这并不表示长数据只有两列,比如我们会记录下每个月每天每个空气指标的值,而每个月的天数不一定相等,所以就会出现第三列记录日期。

一般我们实验记录的数据格式(大多习惯用宽表格记录数据)和我们后期用R绘图所用到的数据格式往往不一样,例如ggplot2plyr,还有大多数建模函数lm()glm()gam()等经常会使用长表格数据来作图,这时用reshape2包来转换实验记录的宽表格数据会十分方便。

Wide- to long-format data: the melt function

例子使用内置于R中的空气质量数据集(airquality)。首先,我们将列名更改为小写方便使用。然后查看一下数据:

代码语言:javascript复制
names(airquality) <- tolower(names(airquality))
head(airquality)
代码语言:javascript复制
##   ozone solar.r wind temp month day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6

如果我们使用所有默认参数运行melt会发生什么呢?

代码语言:javascript复制
library(reshape2)     #  首先加载一下reshape2包
aql <- melt(airquality) # 命名取首字母:[a]ir [q]uality [l]ong format
head(aql)  # 查看数据前6列
tail(aql)   # 查看数据后6列

每一步返回的结果:

代码语言:javascript复制
## No id variables; using all as measure variables

## head(aql)
##   variable value
## 1    ozone    41
## 2    ozone    36
## 3    ozone    12
## 4    ozone    18
## 5    ozone    NA
## 6    ozone    28

## tail(aql)
##     variable value
## 913      day    25
## 914      day    26
## 915      day    27
## 916      day    28
## 917      day    29
## 918      day    30

默认情况下melt会认为全部为数值的每一列都是带有变量的值,包括月份和日期,都合并在了一起,标题行置于variable列,数值置于value列。但是有的时候我们想知道每月里面每一天空气指标臭氧、太阳、风和温度的值,这个时候我们可以设置id.vars=c("")来去除指定的列,只将其他数据做变形。

代码语言:javascript复制
aql <- melt(airquality, id.vars = c("month", "day"))
head(aql)
代码语言:javascript复制
##   month day variable value
## 1     5   1    ozone    41
## 2     5   2    ozone    36
## 3     5   3    ozone    12
## 4     5   4    ozone    18
## 5     5   5    ozone    NA
## 6     5   6    ozone    28

如果我们想控制长数据中的列名怎么办呢?

代码语言:javascript复制
aql <- melt(airquality, id.vars = c("month", "day"),
  variable.name = "climate_variable",
  value.name = "climate_value")
head(aql)
代码语言:javascript复制
##   month day climate_variable climate_value
## 1     5   1            ozone            41
## 2     5   2            ozone            36
## 3     5   3            ozone            12
## 4     5   4            ozone            18
## 5     5   5            ozone            NA
## 6     5   6            ozone            28

Long- to wide-format data: the cast functions

首先使用dcast函数将上面转换后的宽数据转换成长数据。用month day ~ variable告诉dcast月份和日期是变量,转换成的长数据与原始数据除了变量列的序号不一样,其他都一致。

代码语言:javascript复制
aql <- melt(airquality, id.vars = c("month", "day"))
aqw <- dcast(aql, month   day ~ variable)
head(aqw)
head(airquality) # original data
代码语言:javascript复制
##   month day ozone solar.r wind temp
## 1     5   1    41     190  7.4   67
## 2     5   2    36     118  8.0   72
## 3     5   3    12     149 12.6   74
## 4     5   4    18     313 11.5   62
## 5     5   5    NA      NA 14.3   56
## 6     5   6    28      NA 14.9   66

## original data
##   ozone solar.r wind temp month day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6

如果你还不明白上面发生了什么,下面我们使用一张图解来展示:

蓝色阴影表示我们想要表示的各个行的ID变量,红色表示想要转换成列名变量名灰色表示要在单元格中填充的数据

易错点

当每个单元格有多个值时(比如我们想以月而不是天来查看空气指标值,而每个月有多个数据),我们可能会犯一个错。

下面来一个错误示范,这次我们不再将day作为变量:

代码语言:javascript复制
dcast(aql, month ~ variable)
代码语言:javascript复制
##   month ozone solar.r wind temp
## 1     5    31      31   31   31
## 2     6    30      30   30   30
## 3     7    31      31   31   31
## 4     8    31      31   31   31
## 5     9    30      30   30   30

当我们在R运行上面的命令时,会返回一条提示信息:

代码语言:javascript复制
## Aggregation function missing: defaulting to length

查看输出数据时发现,每个单元格填充的数据为每个月的记录天数,并非每个测量指标值。当我们转换数据并且每个单元格有多个值时,还需要使用fun.aggregate=告知dcast以什么方式重新组合数据,是平均值(mean)、中位数(median)还是总和(sum)。

下面我们试试以平均值来重新组合数据,并使用参数na.rm=TRUE来删除空值NA。

代码语言:javascript复制
dcast(aql, month ~ variable, fun.aggregate = mean,
  na.rm = TRUE)
代码语言:javascript复制
##   month    ozone  solar.r      wind     temp
## 1     5 23.61538 181.2963 11.622581 65.54839
## 2     6 29.44444 190.1667 10.266667 79.10000
## 3     7 59.11538 216.4839  8.941935 83.90323
## 4     8 59.96154 171.8571  8.793548 83.96774
## 5     9 31.44828 167.4333 10.180000 76.90000

help

  • 阅读帮助文档:help(package=”reshape2”)
  • 查看reshape2官方网站:http://had.co.nz/reshape/
  • 帮助视频:http://had.co.nz/reshape/french-fries-demo.html

注:视频为.mov格式,可以用QuickTime打开观看

R统计和作图

  • Graphpad,经典绘图工具初学初探
  • 维恩(Venn)图绘制工具大全 (在线 R包)
  • 在R中赞扬下努力工作的你,奖励一份CheatShet
  • 别人的电子书,你的电子书,都在bookdown
  • R语言 - 入门环境Rstudio
  • R语言 - 热图绘制 (heatmap)
  • R语言 - 基础概念和矩阵操作
  • R语言 - 热图简化
  • R语言 - 热图美化
  • R语言 - 线图绘制
  • R语言 - 线图一步法
  • R语言 - 箱线图(小提琴图、抖动图、区域散点图)
  • R语言 - 箱线图一步法
  • R语言 - 火山图
  • R语言 - 富集分析泡泡图
  • R语言 - 散点图绘制
  • R语言 - 韦恩图
  • R语言 - 柱状图
  • R语言 - 图形设置中英字体
  • R语言 - 非参数法生存分析
  • R语言 - 绘制seq logo图
  • WGCNA分析,简单全面的最新教程
  • psych igraph:共表达网络构建
  • 一文学会网络分析——Co-occurrence网络图在R中的实现
  • 一文看懂PCA主成分分析
  • 富集分析DotPlot,可以服
  • 基因共表达聚类分析和可视化
  • R中1010个热图绘制方法
  • 还在用PCA降维?快学学大牛最爱的t-SNE算法吧, 附Python/R代码
  • 一个函数抓取代谢组学权威数据库HMDB的所有表格数据
  • 文章用图的修改和排版
  • network3D: 交互式桑基图
  • network3D 交互式网络生成
  • Seq logo 在线绘制工具——Weblogo
  • 生物AI插图素材获取和拼装指导
  • ggplot2高效实用指南 (可视化脚本、工具、套路、配色)
  • 图像处理R包magick学习笔记
  • SOM基因表达聚类分析初探
  • 利用gganimate可视化全球范围R-Ladies(R社区性别多样性组织)发展情况
  • 一分钟绘制磷脂双分子层:AI零基础入门和基本图形绘制
  • AI科研绘图(二):模式图的基本画法
  • 你知道R中的赋值符号箭头(<-)和等号(=)的区别吗?
  • R语言可视化学习笔记之ggridges包
  • 利用ComplexHeatmap绘制热图(一)
  • ggplot2学习笔记之图形排列
  • 用R在地图上绘制网络图的三种方法
  • PCA主成分分析实战和可视化 附R代码和测试数据
  • iTOL快速绘制颜值最高的进化树!
  • 12个ggplot2扩展包帮你实现更强大的可视化
  • 编程模板-R语言脚本写作:最简单的统计与绘图,包安装、命令行参数解析、文件读取、表格和矢量图输出
  • R语言统计入门课程推荐——生物科学中的数据分析Data Analysis for the Life Sciences
  • 数据可视化基本套路总结
  • 你知道R中的赋值符号箭头<-和等号=的区别吗?
  • 使用dplyr进行数据操作30例
  • 交集intersect、并集union、找不同setdiff
  • R包reshape2,轻松实现长、宽数据表格转换
  • 1数据类型(向量、数组、矩阵、 列表和数据框)
  • 2读写数据所需的主要函数、与外部环境交互
  • 3数据筛选——提取对象的子集
  • 4向量、矩阵的数学运算
  • 5控制结构
  • 6函数及作用域
  • 7认识循环函数lapply和sapply
  • 8分解数据框split和查看对象str
  • 9模拟—随机数、抽样、线性模型
  • 1初识ggplot2绘制几何对象
  • 2图层的使用—基础、加标签、注释
  • 3工具箱—误差线、加权数、展示数据分布
  • 4语法基础
  • 5通过图层构建图像
  • 6标度、轴和图例
  • 7定位-分面和坐标系
  • 8主题设置、存储导出
  • 9绘图需要的数据整理技术
  • 创建属于自己的调色板
  • 28个实用绘图包,总有几个适合你
  • 热图绘制
  • R做线性回归
  • 绘图相关系数矩阵corrplot
  • 相关矩阵可视化ggcorrplot
  • 绘制交互式图形recharts
  • 交互式可视化CanvasXpress
  • 聚类分析factoextra
  • LDA分析、作图及添加置信-ggord
  • 解决散点图样品标签重叠ggrepel
  • 添加P值或显著性标记ggpubr
  • Alpha多样性稀释曲线rarefraction curve
  • 堆叠柱状图各成分连线画法:突出组间变化
  • 冲击图展示组间时间序列变化ggalluvial
  • 桑基图riverplot
  • 微生物环境因子分析ggvegan
  • 五彩进化树与热图更配ggtree
  • 多元回归树分析mvpart
  • 随机森林randomForest 分类Classification 回归Regression
  • 加权基因共表达网络分析WGCNA
  • circlize包绘制circos-plot
  • R语言搭建炫酷的线上博客系统
  • 28个实用绘图包,总有几个适合你
  • 热图绘制
  • R做线性回归
  • 绘图相关系数矩阵corrplot
  • 相关矩阵可视化ggcorrplot
  • 绘制交互式图形recharts
  • 交互式可视化CanvasXpress
  • 聚类分析factoextra
  • LDA分析、作图及添加置信-ggord
  • 解决散点图样品标签重叠ggrepel
  • 添加P值或显著性标记ggpubr
  • Alpha多样性稀释曲线rarefraction curve
  • 堆叠柱状图各成分连线画法:突出组间变化
  • 冲击图展示组间时间序列变化ggalluvial
  • 桑基图riverplot
  • 微生物环境因子分析ggvegan
  • 五彩进化树与热图更配ggtree
  • 多元回归树分析mvpart
  • 随机森林randomForest 分类Classification 回归Regression
  • 加权基因共表达网络分析WGCNA
  • circlize包绘制circos-plot
  • R语言搭建炫酷的线上博客系统
  • 维恩(Venn)图绘制工具大全 (在线 R包)
  • R包circlize:柱状图用腻了?试试好看的弦状图
  • 获取pheatmap聚类后和标准化后的结果
  • 一个震撼的交互型3D可视化R包 - 可直接转ggplot2图为3D
  • 赠你一只金色的眼 - 富集分析和表达数据可视化
  • 是Excel的图,不!是R的图
  • 道友,来Rstudio里面看动画了
  • 用了这么多年的PCA可视化竟然是错的!!!
  • R语言可视化学习笔记之ggridges包
  • 万能转换:R图和统计表转成发表级的Word、PPT、Excel、HTML、Latex、矢量图

0 人点赞