版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ZY_FlyWay/article/details/90727833
Integers
按照由基本到复杂的逻辑走,先从数据基本类型说起。每句代码都会看,会翻译备注,直接的记笔记。
涉及文件:
- IntegerTypes.swift.gyb
- Integers.swift
- IntegerParsing.swift
源码链接:https://github.com/apple/swift/blob/master/stdlib/public/core
.gyb文件是什么
代码语言:javascript复制 GYB(模板生成)是一个 Swift 内部使用的工具,可以用模板生成源文件。
问:在这里为什么要使用gyb文件?
答:Swift 标准库整型,它有诸如符号整数( Int8 , Int16 , Int32 , Int64 )这样的类型家族,其中各个类型的实现除大小之外没有其他不同。
拷贝粘贴可以作为一次性的解决方案(假设你第一次就做的没有错误),但这种方法无法继续维护。每当你想修改这些派生的实现,都会有引入细微不一致的风险,久而久之导致这些实现变得不相同——有一点类似于地球上生命的多样性是因为基因随机突变导致的一样。
从 C 模板和 Lisp 宏到 eval 和 C 预处理器指令,不同的语言使用不同的技术来应对这个问题。
Swift 没有宏系统,并且因为标准库本身是使用 Swift 编写的,所以它也不能利用 C 元编程的能力。因此,Swift 的维护者们使用一个叫作 gyb.py 的 Python 脚本和一些模板标签来生成代码。
详细了解参考两篇文章理解: http://ju.outofmemory.cn/entry/363956 https://www.jianshu.com/p/35e2ca4592cf
读Integer.swift源码
第一段:初始化
代码语言:javascript复制// FIXME(integers): This should go in the stdlib separately, probably.
// 大神也有可爱和不确定的地方,他认为这部分似乎可以从stdlib分开
extension ExpressibleByIntegerLiteral
where Self : _ExpressibleByBuiltinIntegerLiteral {
// @_transparent该特性会导致编译器在管道(pipeline)中更早地将函数内联。
@_transparent
public init(integerLiteral value: Self) {
self = value
}
}
上面代码是ExpressibleByIntegerLiteral实现部分。
第二段:加性算术
代码语言:javascript复制//===----------------------------------------------------------------------===//
//===--- AdditiveArithmetic -----------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A type with values that support addition and subtraction.
/// 让一个类型的值支持加减法
///
/// The `AdditiveArithmetic` protocol provides a suitable basis for additive
/// arithmetic on scalar values, such as integers and floating-point numbers,
/// or vectors. You can write generic methods that operate on any numeric type
/// in the standard library by using the `AdditiveArithmetic` protocol as a
/// generic constraint.
/// “加法算术”协议为标量值(如整数、浮点数或向量)的加法算术提供了一个合适的基础。通过使
/// 用“additivearith”协议作为泛型约束,可以编写对标准库中的任何数字类型进行操作的泛型方法。
///
/// The following code declares a method that calculates the total of any
/// sequence with `AdditiveArithmetic` elements.
///
/// extension Sequence where Element: AdditiveArithmetic {
/// func sum() -> Element {
/// return reduce(.zero, )
/// }
/// }
///
/// The `sum()` method is now available on any sequence with values that
/// conform to `AdditiveArithmetic`, whether it is an array of `Double` or a
/// range of `Int`.
///
/// let arraySum = [1.1, 2.2, 3.3, 4.4, 5.5].sum()
/// // arraySum == 16.5
///
/// let rangeSum = (1..<10).sum()
/// // rangeSum == 45
///
/// Conforming to the AdditiveArithmetic Protocol
/// =============================================
///
/// To add `AdditiveArithmetic` protocol conformance to your own custom type,
/// implement the required operators, and provide a static `zero` property
/// using a type that can represent the magnitude of any value of your custom
/// type.
public protocol AdditiveArithmetic : Equatable {
/// The zero value.
///
/// Zero is the identity element for addition. For any value,
/// `x .zero == x` and `.zero x == x`.
static var zero: Self { get }
/// Adds two values and produces their sum.
///
/// The addition operator (` `) calculates the sum of its two arguments. For
/// example:
///
/// 1 2 // 3
/// -10 15 // 5
/// -15 -5 // -20
/// 21.5 3.25 // 24.75
///
/// You cannot use ` ` with arguments of different types. To add values of
/// different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) y // 1000021
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
static func (lhs: Self, rhs: Self) -> Self
/// Adds two values and stores the result in the left-hand-side variable.
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
static func =(lhs: inout Self, rhs: Self)
/// Subtracts one value from another and produces their difference.
///
/// The subtraction operator (`-`) calculates the difference of its two
/// arguments. For example:
///
/// 8 - 3 // 5
/// -10 - 5 // -15
/// 100 - -5 // 105
/// 10.5 - 100.0 // -89.5
///
/// You cannot use `-` with arguments of different types. To subtract values
/// of different types, convert one of the values to the other value's type.
///
/// let x: UInt8 = 21
/// let y: UInt = 1000000
/// y - UInt(x) // 999979
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
static func -(lhs: Self, rhs: Self) -> Self
/// Subtracts the second value from the first and stores the difference in the
/// left-hand-side variable.
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
static func -=(lhs: inout Self, rhs: Self)
}
public extension AdditiveArithmetic where Self : ExpressibleByIntegerLiteral {
/// The zero value.
///
/// Zero is the identity element for addition. For any value,
/// `x .zero == x` and `.zero x == x`.
static var zero: Self {
return 0
}
}
上面的代码主要介绍了AdditiveArithmetic协议:
AdditiveArithmetic协议里的 , =,-,-=四个方法,还有一个zero属性,下面是zero的默认实现。
协议用法如注释例子(重复一遍):
代码语言:javascript复制extension Sequence where Element: AdditiveArithmetic {
func sum() -> Element {
return reduce(.zero, )
}
}
let arraySum = [1.1, 2.2, 3.3, 4.4, 5.5].sum()
// arraySum == 16.5
let rangeSum = (1..<10).sum()
// rangeSum == 45
第三段:数字协议
代码语言:javascript复制//===----------------------------------------------------------------------===//
//===--- 数字协议 ----------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A type with values that support multiplication.
/// 遵守该协议的类型值会支持乘法性质运算
///
/// The `Numeric` protocol provides a suitable basis for arithmetic on
/// scalar values, such as integers and floating-point numbers. You can write
/// generic methods that operate on any numeric type in the standard library
/// by using the `Numeric` protocol as a generic constraint.
///
/// `Numeric`这个协议为类似整型,浮点型这种标量提供计算的基础,
/// 你可以写操作标准库中任何数字类型的泛型方法,使用“Numeric”协议作为通用约束。
///
/// The following example extends `Sequence` with a method that returns an
/// array with the sequence's values multiplied by two.
///
/// 下面的例子是扩展了`Sequence` ,添加了一个方法使序列的每一个值都乘以2
///
/// extension Sequence where Element: Numeric {
/// func doublingAll() -> [Element] {
/// return map { $0 * 2 }
/// }
/// }
///
/// With this extension, any sequence with elements that conform to `Numeric`
/// has the `doublingAll()` method. For example, you can double the elements of
/// an array of doubles or a range of integers:
///
/// let observations = [1.5, 2.0, 3.25, 4.875, 5.5]
/// let doubledObservations = observations.doublingAll()
/// // doubledObservations == [3.0, 4.0, 6.5, 9.75, 11.0]
///
/// let integers = 0..<8
/// let doubledIntegers = integers.doublingAll()
/// // doubledIntegers == [0, 2, 4, 6, 8, 10, 12, 14]
///
/// Conforming to the Numeric Protocol
/// ==================================
///
/// To add `Numeric` protocol conformance to your own custom type, implement
/// the required initializer and operators, and provide a `magnitude` property
/// using a type that can represent the magnitude of any value of your custom
/// type.
/// 自定义类型想去遵守该协议,需要实现初始化方法和操作符, 和提供一个`magnitude`属性。
///
public protocol Numeric : AdditiveArithmetic, ExpressibleByIntegerLiteral {
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
/// 可以从给定的整型初始化,并成功转换。
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// 如果给定的数据不能准确的转换成功,那么结果返回nil.
/// 下面的例子,100转换成常量x被成功创建.当试图去从1_000创建y的时候失败了,因为`Int8` 类型只能在 127之内转换。
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A value to convert to this type.
init?<T : BinaryInteger>(exactly source: T)
/// A type that can represent the absolute value of any possible value of the
/// conforming type.
/// 一个可以等同于准守协议类型值绝对值的类型。
associatedtype Magnitude : Comparable, Numeric
/// The magnitude of this value.
///
/// For any numeric value `x`, `x.magnitude` is the absolute value of `x`.
/// You can use the `magnitude` property in operations that are simpler to
/// implement in terms of unsigned values, such as printing the value of an
/// integer, which is just printing a '-' character in front of an absolute
/// value.
/// numeric类型的值`x`,`x.magnitude` 是 `x`的绝对值。
/// 你可以使用这个属性很容易的去使用无符号值,例如打印一个整数的值,它只是在绝对值前面打印一个“-”字符。
/// let x = -200
/// // x.magnitude == 200
///
/// The global `abs(_:)` function provides more familiar syntax when you need
/// to find an absolute value. In addition, because `abs(_:)` always returns
/// a value of the same type, even in a generic context, using the function
/// instead of the `magnitude` property is encouraged.
/// 当您需要查找绝对值时,全局' abs(_:) '函数提供了更熟悉的语法。此外,因为' abs(_:) '总是返回
/// 相同类型的值,即使在通用上下文中也是如此,因此建议使用函数而不是'magnitude'属性。
var magnitude: Magnitude { get }
/// Multiplies two values and produces their product.
///
/// The multiplication operator (`*`) calculates the product of its two
/// arguments. For example:
///
/// 2 * 3 // 6
/// 100 * 21 // 2100
/// -10 * 15 // -150
/// 3.5 * 2.25 // 7.875
///
/// You cannot use `*` with arguments of different types. To multiply values
/// of different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) * y // 21000000
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
static func *(lhs: Self, rhs: Self) -> Self
/// Multiplies two values and stores the result in the left-hand-side
/// variable.
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
/// lhs 要使用inout,为了避免值拷贝,应在原来内存的值里修改。
static func *=(lhs: inout Self, rhs: Self)
}
第四段:有符号数字协议
代码语言:javascript复制/// A type that can represent both positive and negative values.
/// 一个可以同时表示正值和负值得类型
///
/// The `SignedNumeric` protocol extends the operations defined by the
/// `Numeric` protocol to include a value's additive inverse.
///
/// `SignedNumeric`协议扩展了`Numeric`的操作,包括了加性逆元素(-x 是 x 的加性逆元素)。
/// Conforming to the SignedNumeric Protocol
/// ========================================
///
/// Because the `SignedNumeric` protocol provides default implementations of
/// both of its required methods, you don't need to do anything beyond
/// declaring conformance to the protocol and ensuring that the values of your
/// type support negation. To customize your type's implementation, provide
/// your own mutating `negate()` method.
///
///因为' SignedNumeric '协议提供了它所需要的两个方法的默认实现,所以除了声明协议的一致性和确保类型 的值支持否定之外,您不需要做任何事情。要自定义类型的实现,请提供您自己的“negate()”方法。
///
/// When the additive inverse of a value is unrepresentable in a conforming
/// type, the operation should either trap or return an exceptional value. For
/// example, using the negation operator (prefix `-`) with `Int.min` results in
/// a runtime error.
///
/// 当准守这个协议的值不可以被表示出来的时候,应该被捕捉或者返回异常值。
/// 举个例子,在`Int.min`使用用负号(前缀-)运行时会报错误。(因为内存溢出)
/// let x = Int.min
/// let y = -x
/// // Overflow error
public protocol SignedNumeric : Numeric {
/// Returns the additive inverse of the specified value.
///
/// The negation operator (prefix `-`) returns the additive inverse of its
/// argument.
///
/// let x = 21
/// let y = -x
/// // y == -21
///
/// The resulting value must be representable in the same type as the
/// argument. In particular, negating a signed, fixed-width integer type's
/// minimum results in a value that cannot be represented.
///
/// let z = -Int8.min
/// // Overflow error
///
/// - Returns: The additive inverse of this value.
static prefix func - (_ operand: Self) -> Self
/// Replaces this value with its additive inverse.
///
/// The following example uses the `negate()` method to negate the value of
/// an integer `x`:
///
/// var x = 21
/// x.negate()
/// // x == -21
///
/// The resulting value must be representable within the value's type. In
/// particular, negating a signed, fixed-width integer type's minimum
/// results in a value that cannot be represented.
///
/// var y = Int8.min
/// y.negate()
/// // Overflow error
mutating func negate()
}
extension SignedNumeric {
/// Returns the additive inverse of the specified value.
///
/// The negation operator (prefix `-`) returns the additive inverse of its
/// argument.
///
/// let x = 21
/// let y = -x
/// // y == -21
///
/// The resulting value must be representable in the same type as the
/// argument. In particular, negating a signed, fixed-width integer type's
/// minimum results in a value that cannot be represented.
///
/// let z = -Int8.min
/// // Overflow error
///
/// - Returns: The additive inverse of the argument.
@_transparent
public static prefix func - (_ operand: Self) -> Self {
var result = operand
result.negate()
return result
}
/// Replaces this value with its additive inverse.
///
/// The following example uses the `negate()` method to negate the value of
/// an integer `x`:
///
/// var x = 21
/// x.negate()
/// // x == -21
///
/// The resulting value must be representable within the value's type. In
/// particular, negating a signed, fixed-width integer type's minimum
/// results in a value that cannot be represented.
///
/// var y = Int8.min
/// y.negate()
/// // Overflow error
@_transparent
public mutating func negate() {
self = 0 - self
}
}
/// Returns the absolute value of the given number.
///
/// The absolute value of `x` must be representable in the same type. In
/// particular, the absolute value of a signed, fixed-width integer type's
/// minimum cannot be represented.
///
/// let x = Int8.min
/// // x == -128
/// let y = abs(x)
/// // Overflow error
///
/// - Parameter x: A signed number.
/// - Returns: The absolute value of `x`.
@inlinable
public func abs<T : SignedNumeric & Comparable>(_ x: T) -> T {
if T.self == T.Magnitude.self {
return unsafeBitCast(x.magnitude, to: T.self)
}
return x < (0 as T) ? -x : x
}
extension AdditiveArithmetic {
/// Returns the given number unchanged.
///
/// You can use the unary plus operator (` `) to provide symmetry in your
/// code for positive numbers when also using the unary minus operator.
///
/// let x = -21
/// let y = 21
/// // x == -21
/// // y == 21
///
/// - Returns: The given argument without any changes.
@_transparent
public static prefix func (x: Self) -> Self {
return x
}
}
这样写下去有点头大,策略不对。
决定改为总结性重点方法使用分析。