从SARSA算法到Q-learning with ϵ-greedy Exploration算法

2019-10-28 16:27:17 浏览数 (1)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/Solo95/article/details/102762027

这篇博文是Model-Free Control的一部分,事实上SARSA和Q-learning with ϵ-greedy Exploration都是不依赖模型的控制的一部分,如果你想要全面的了解它们,建议阅读原文。

SARSA Algorithm

SARSA代表state,action,reward,next state,action taken in next state,算法在每次采样到该五元组时更新,所以得名SARSA。

1: Set1: Set1: Set Initial ϵepsilonϵ-greedy policy π,t=0pi,t=0π,t=0, initial state st=s0s_t=s_0st​=s0​ 2: Take at∼π(st)2: Take a_t sim pi(s_t)2: Take at​∼π(st​) // Sample action from policy 3: Observe (rt,st 1)3: Observe (r_t, s_{t 1})3: Observe (rt​,st 1​) 4: loop4: loop4: loop 5: Take5: quad Take5: Take action at 1∼π(st 1)a_{t 1}sim pi(s_{t 1})at 1​∼π(st 1​) 6: Observe (rt 1,st 2)6: quad Observe (r_{t 1},s_{t 2})6: Observe (rt 1​,st 2​) 7: Q(st,at)←Q(st,at) α(rt γQ(st 1,at 1)−Q(st,at))7: quad Q(s_t,a_t) leftarrow Q(s_t,a_t) alpha(r_t gamma Q(s_{t 1},a_{t 1})-Q(s_t,a_t))7: Q(st​,at​)←Q(st​,at​) α(rt​ γQ(st 1​,at 1​)−Q(st​,at​)) 8: π(st)=argmax Q(st,a)w.prob 1−ϵ,else random8: quad pi(s_t) = mathop{argmax} Q(s_t,a) w.prob 1-epsilon, else random8: π(st​)=argmax Q(st​,a)w.prob 1−ϵ,else random 9: t=t 19: t=t 19: t=t 1 10:end loop10: end loop10:end loop

Q-learing: Learning the Optimal State-Action Value

我们能在不知道π∗pi^*π∗的情况下估计最佳策略π∗pi^*π∗的价值吗?

可以。使用Q-learning。

核心思想: 维护state-action Q值的估计并且使用它来bootstrap最佳未来动作的的价值。

回顾SARSA Q(st,at)←Q(st,at) α((rt γQ(st 1,at 1))−Q(st,at))Q(s_t,a_t)leftarrow Q(s_t,a_t) alpha((r_t gamma Q(s_{t 1},a_{t 1}))-Q(s_t,a_t))Q(st​,at​)←Q(st​,at​) α((rt​ γQ(st 1​,at 1​))−Q(st​,at​))

Q-learning Q(st,at)←Q(st,at) α((rt γmaxa′Q(st 1,a′)−Q(st,at)))Q(s_t,a_t)leftarrow Q(s_t,a_t) alpha((r_t gamma mathop{max}limits_{a'}Q(s_{t 1},a')-Q(s_t,a_t)))Q(st​,at​)←Q(st​,at​) α((rt​ γa′max​Q(st 1​,a′)−Q(st​,at​)))

Off-Policy Control Using Q-learning
  • 在上一节中假定了有某个策略πbpi_bπb​可以用来执行
  • πbpi_bπb​决定了实际获得的回报
  • 现在在来考虑如何提升行为策略(policy improvement)
  • 使行为策略πbpi_bπb​是对(w.r.t)当前的最佳Q(s,a)Q(s,a)Q(s,a)估计的- ϵepsilonϵ-greedy策略

Q-learning with ϵepsilonϵ-greedy Exploration

1: Intialize Q(s,a),∀s∈S,a∈A t=0,1: Intialize Q(s,a), forall s in S, a in A t=0,1: Intialize Q(s,a),∀s∈S,a∈A t=0, initial state st=s0s_t=s_0st​=s0​ 2: Set πb2: Set pi_b2: Set πb​ to be ϵepsilonϵ-greedy w.r.t. Q$ 3: loop3: loop3: loop 4: Take at∼πb(st)4: quad Take a_t simpi_b(s_t)4: Take at​∼πb​(st​) // simple action from policy 5: Observe (rt,st 1)5: quad Observe (r_t, s_{t 1})5: Observe (rt​,st 1​) 6: Update Q6: quad Update Q6: Update Q given (st,at,rt,st 1)(s_t,a_t,r_t,s_{t 1})(st​,at​,rt​,st 1​) 7: Q(sr,ar)←Q(st,rt) α(rt γmaxaQ(st1,a)−Q(st,at))7: quad Q(s_r,a_r) leftarrow Q(s_t,r_t) alpha(r_t gamma mathop{max}limits_{a}Q(s_{t1},a)-Q(s_t,a_t))7: Q(sr​,ar​)←Q(st​,rt​) α(rt​ γamax​Q(st1​,a)−Q(st​,at​)) 8: Perform8: quad Perform8: Perform policy impovement: set πbset pi_bset πb​ to be ϵepsilonϵ-greedy w.r.t Q 9: t=t 19: quad t=t 19: t=t 1 10:end loop10: end loop10:end loop

如何初始化QQQ重要吗? 无论怎样初始化QQQ(设为0,随机初始化)都会收敛到正确值,但是在实际应用上非常重要,以最优化初始化形式初始化它非常有帮助。会在exploration细讲这一点。

例题

0 人点赞