概述
前面我写了很多篇关于OpenCV DNN应用相关的文章,这里再来一篇文章,用OpenCV DNN实现一个很有趣好玩的例子,基于Caffe的预训练模型实现年龄与性别预测,这个在很多展会上都有展示,OpenCV DNN实现这里非常简洁明了,总共不到100行的代码。下面就来说一下怎么实现的,首先下载两个Caffe的预训练模型:
Gender Net and Age Net
https://www.dropbox.com/s/iyv483wz7ztr9gh/gender_net.caffemodel?dl=0"
https://www.dropbox.com/s/xfb20y596869vbb/age_net.caffemodel?dl=0"
上述两个模型一个是预测性别的,一个是预测年龄的,性别预测返回的是一个二分类结果
代码语言:javascript复制Male
Female
年龄预测返回的是8个年龄的阶段!
代码语言:javascript复制'(0-2)',
'(4-6)',
'(8-12)',
'(15-20)',
'(25-32)',
'(38-43)',
'(48-53)',
'(60-100)'
人脸检测是基于OPenCV DNN模块自带的残差网络的人脸检测算法模型!非常的强大与好用!
实现步骤
完整的实现步骤需要如下几步:
- 预先加载三个网络模型
- 打开摄像头视频流/加载图像
- 对每一帧进行人脸检测 - 对检测到的人脸进行性别与年龄预测 - 解析预测结果 - 显示结果
代码实现详解
加载模型
代码语言:javascript复制MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)
人脸检测
代码语言:javascript复制frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
性别与年龄预测
代码语言:javascript复制 for bbox in bboxes:
# print(bbox)
face = frame[max(0,bbox[1]-padding):min(bbox[3] padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2] padding, frame.shape[1]-1)]
blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
# print("Gender Output : {}".format(genderPreds))
print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
print("Age Output : {}".format(agePreds))
print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
label = "{},{}".format(gender, age)
cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
cv.imshow("Age Gender Demo", frameFace)
print("time : {:.3f} ms".format(time.time() - t))
运行效果(看到这个预测,我又相信技术了!@_@):
完整源代码:
代码语言:javascript复制import cv2 as cv
import time
def getFaceBox(net, frame, conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
return frameOpencvDnn, bboxes
faceProto = "D:/projects/opencv_tutorial/data/models/face_detector/opencv_face_detector.pbtxt"
faceModel = "D:/projects/opencv_tutorial/data/models/face_detector/opencv_face_detector_uint8.pb"
ageProto = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/age_deploy.prototxt"
ageModel = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/age_net.caffemodel"
genderProto = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/gender_deploy.prototxt"
genderModel = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/gender_net.caffemodel"
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)
# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(0)
padding = 20
while cv.waitKey(1) < 0:
# Read frame
t = time.time()
hasFrame, frame = cap.read()
frame = cv.flip(frame, 1)
if not hasFrame:
cv.waitKey()
break
frameFace, bboxes = getFaceBox(faceNet, frame)
if not bboxes:
print("No face Detected, Checking next frame")
continue
for bbox in bboxes:
# print(bbox)
face = frame[max(0,bbox[1]-padding):min(bbox[3] padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2] padding, frame.shape[1]-1)]
blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
# print("Gender Output : {}".format(genderPreds))
print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
print("Age Output : {}".format(agePreds))
print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
label = "{},{}".format(gender, age)
cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
cv.imshow("Age Gender Demo", frameFace)
print("time : {:.3f} ms".format(time.time() - t))
源码与模型下载地址
https://github.com/gloomyfish1998/opencv_tutorial