DataX的Clickhouse读写插件

2019-11-20 19:39:08 浏览数 (1)

作者:一剑飘雪

ClickHouseReader 插件文档

1 快速介绍

ClickHouseReader插件实现了从ClickHouse读取数据。在底层实现上,ClickHouseReader通过JDBC连接远程ClickHouse数据库,并执行相应的sql语句将数据从ClickHouse库中SELECT出来。

不同于其他关系型数据库,ClickHouseReader不支持FetchSize.(截止ClickHouse-jdbc版本0.1.48为止)

2 实现原理

简而言之,ClickHouseReader通过JDBC连接器连接到远程的ClickHouse数据库,并根据用户配置的信息生成查询SELECT SQL语句,然后发送到远程ClickHouse数据库,并将该SQL执行返回结果使用DataX自定义的数据类型拼装为抽象的数据集,并传递给下游Writer处理。

对于用户配置Table、Column、Where的信息,ClickHouseReader将其拼接为SQL语句发送到ClickHouse数据库;对于用户配置querySql信息,ClickHouseReader直接将其发送到ClickHouse数据库。

3 功能说明

3.1 配置样例

  • 配置一个从ClickHouse数据库同步抽取数据到本地的作业:
代码语言:javascript复制
{
    "job": {
        "setting": {
            "speed": {
                 "channel": 3
            },
            "errorLimit": {
                "record": 0,
                "percentage": 0.02
            }
        },
        "content": [
            {
                "reader": {
                    "name": "clickhousereader",
                    "parameter": {
                        "username": "root",
                        "password": "root",
                        "column": [
                            "id",
                            "name"
                        ],
                        "splitPk": "db_id",
                        "connection": [
                            {
                                "table": [
                                    "table"
                                ],
                                "jdbcUrl": [
     "jdbc:clickhouse://127.0.0.1:8123/default"
                                ]
                            }
                        ]
                    }
                },
               "writer": {
                    "name": "streamwriter",
                    "parameter": {
                        "print":true
                    }
                }
            }
        ]
    }
}
  • 配置一个自定义SQL的数据库同步任务到本地内容的作业:
代码语言:javascript复制
{
    "job": {
        "setting": {
            "speed": {
                 "channel":1
            }
        },
        "content": [
            {
                "reader": {
                    "name": "clickhousereader",
                    "parameter": {
                        "username": "root",
                        "password": "root",
                        "connection": [
                            {
                                "querySql": [
                                    "select db_id,on_line_flag from db_info where db_id < 10;"
                                ],
                                "jdbcUrl": [
                                    "jdbc:clickhouse://127.0.0.1:8123/default"
                                ]
                            }
                        ]
                    }
                },
                "writer": {
                    "name": "streamwriter",
                    "parameter": {
                        "print": false,
                        "encoding": "UTF-8"
                    }
                }
            }
        ]
    }
}

3.2 参数说明

  • jdbcUrl
    • 描述:描述的是到对端数据库的JDBC连接信息,使用JSON的数组描述,并支持一个库填写多个连接地址。之所以使用JSON数组描述连接信息,是因为阿里集团内部支持多个IP探测,如果配置了多个,ClickHouseReader可以依次探测ip的可连接性,直到选择一个合法的IP。如果全部连接失败,ClickHouseReader报错。 注意,jdbcUrl必须包含在connection配置单元中。对于阿里集团外部使用情况,JSON数组填写一个JDBC连接即可。 jdbcUrl按照ClickHouse官方规范,并可以填写连接附件控制信息。具体请参看ClickHouse官方文档。
    • 必选:是
    • 默认值:无
  • username
    • 描述:数据源的用户名
    • 必选:是
    • 默认值:无
  • password
    • 描述:数据源指定用户名的密码
    • 必选:是
    • 默认值:无
  • table
    • 描述:所选取的需要同步的表。使用JSON的数组描述,因此支持多张表同时抽取。当配置为多张表时,用户自己需保证多张表是同一schema结构,ClickHouseReader不予检查表是否同一逻辑表。注意,table必须包含在connection配置单元中。
    • 必选:是
    • 默认值:无
  • column
    • 描述:所配置的表中需要同步的列名集合,使用JSON的数组描述字段信息。用户使用*代表默认使用所有列配置,例如[’*’]。 支持列裁剪,即列可以挑选部分列进行导出。 支持列换序,即列可以不按照表schema信息进行导出。 支持常量配置,用户需要按照ClickHouse SQL语法格式: [“id”, “`table`”, “1”, “‘bazhen.csy’”, “null”, “toDate(trade_date) 1”, “2.3” , “true”] id为普通列名,`table`为包含保留在的列名,1为整形数字常量,’bazhen.csy’为字符串常量,null为空指针,toDate(trade_date) 1为表达式,2.3为浮点数,true为布尔值。
    • 必选:是
    • 默认值:无
  • splitPk 目前splitPk仅支持整形、字符串数据切分,不支持浮点、日期等其他类型。如果用户指定其他非支持类型,ClickHouseReader将报错! 如果splitPk不填写,包括不提供splitPk或者splitPk值为空,DataX视作使用单通道同步该表数据。
    • 必选:否
    • 默认值:空
    • 描述:ClickHouseReader进行数据抽取时,如果指定splitPk,表示用户希望使用splitPk代表的字段进行数据分片,DataX因此会启动并发任务进行数据同步,这样可以大大提供数据同步的效能。 推荐splitPk用户使用表主键,因为表主键通常情况下比较均匀,因此切分出来的分片也不容易出现数据热点。
  • where
    • 描述:筛选条件,ClickHouseReader根据指定的column、table、where条件拼接SQL,并根据这个SQL进行数据抽取。在实际业务场景中,往往会选择当天的数据进行同步,可以将where条件指定为gmt_create > $bizdate 。注意:不可以将where条件指定为limit 10,limit不是SQL的合法where子句。 where条件可以有效地进行业务增量同步。如果不填写where语句,包括不提供where的key或者value,DataX均视作同步全量数据。
    • 必选:否
    • 默认值:无
  • querySql 当用户配置querySql时,ClickHouseReader直接忽略table、column、where条件的配置,querySql优先级大于table、column、where选项。
    • 必选:否
    • 默认值:无
    • 描述:在有些业务场景下,where这一配置项不足以描述所筛选的条件,用户可以通过该配置型来自定义筛选SQL。当用户配置了这一项之后,DataX系统就会忽略table,column这些配置型,直接使用这个配置项的内容对数据进行筛选,例如需要进行多表join后同步数据,使用select a,b from table_a join table_b on table_a.id = table_b.id

3.3 类型转换

目前ClickHouseReader支持大部分ClickHouse类型,但也存在部分个别类型没有支持的情况,请注意检查你的类型。

下面列出ClickHouseReader针对ClickHouse类型转换列表:

DataX 内部类型

ClickHouse 数据类型

Long

Uint8,Uint16,Uint32,Uint64,Int8,Int16,Int32,Int64,Enum8,Enum16

Double

Float32,Float64,Decimal

String

String,FixedString(N)

Date

Date, Datetime

Boolean

UInt8 类型,取值限制为 0 或 1

Bytes

String

请注意:

  • 除上述罗列字段类型外,其他类型均不支持,如Array、Nested等

4 性能报告

4.1 环境准备

4.1.1 数据特征

建表语句:

代码语言:javascript复制
CREATE TABLE `t_trade_record` (
    `id` INT ( 11 ) NOT NULL AUTO_INCREMENT,
    `trade_no` BIGINT ( 20 ) NOT NULL,
    `order_no` BIGINT ( 20 ),
    `pair_id` VARCHAR ( 128 ),
    `belonger` VARCHAR ( 128 ),
    `login_name` VARCHAR ( 128 ),
    `belonger_type` VARCHAR ( 32 ),
    `trade_date` date,
    `trade_time` TIMESTAMP(0),
    `bs_flag` VARCHAR ( 8 ),
    `price` DECIMAL ( 16, 8 ),
    `quantity` INT ( 11 ),
    `income_asset_code` VARCHAR ( 128 ),
    `income_fee` DECIMAL ( 16, 8 ),
    `update_time` TIMESTAMP(0) NULL,
    `insert_time` TIMESTAMP(0) NULL,
    PRIMARY KEY ( `id` ) USING BTREE,
    UNIQUE INDEX `index_trade_no` ( `trade_no` ) USING BTREE 
) ENGINE = INNODB CHARACTER SET = utf8;

插入记录类似于:

代码语言:javascript复制
INSERT INTO `t_match_record`(`id`, `trade_no`, `order_no`, `pair_id`, `belonger`, `login_name`, `belonger_type`, `trade_date`, `trade_time`, `bs_flag`, `price`, `quantity`, `income_asset_code`, `income_fee`, `update_time`, `insert_time`) VALUES (141135300, 116615441, 115754819, 'ETH-USDT', '2357246974', '131****4807', '0', '2019-04-21', '2019-04-21 00:34:19', 'B', 113.02000000, 0, 'C10001', 0.00001110, '2018-12-21 00:35:00', '2018-12-21 00:35:00');
INSERT INTO `t_match_record`(`id`, `trade_no`, `order_no`, `pair_id`, `belonger`, `login_name`, `belonger_type`, `trade_date`, `trade_time`, `bs_flag`, `price`, `quantity`, `income_asset_code`, `income_fee`, `update_time`, `insert_time`) VALUES (141135299, 116615440, 115754793, 'ETH-USDT', '2357246974', '131****4807', '0', '2019-04-21', '2019-04-21 00:34:19', 'S', 113.02000000, 0, 'C10002', 0.00037297, '2018-12-21 00:35:00', '2018-12-21 00:35:00');
4.1.2 机器参数
  • 执行DataX的机器参数为:
    1. cpu: 4核 Intel(R) Core(TM) i5-8600 CPU @ 3.10GHz
    2. mem: 4GB
    3. net: 千兆双网卡
    4. disc: DataX 数据不落磁盘,不统计此项
  • ClickHouse数据库机器参数为: 虚拟机配置如下
    1. cpu: 2物理2逻辑 Intel(R) Core(TM) i5-8600 CPU @ 3.10GHz
    2. mem: 2G
    3. net: 千兆双网卡
4.1.3 DataX jvm 参数
代码语言:javascript复制
-Xms1024m -Xmx1024m -XX: HeapDumpOnOutOfMemoryError

4.2 测试报告

4.2.1 单表测试报告

通道数

是否按照主键切分

DataX速度(Rec/s)

DataX流量(MB/s)

DataX机器网卡进入流量(MB/s)

DataX机器运行负载

DB网卡流出流量(MB/s)

DB运行负载

1

192299

21.82

36

0.6

38

0.6

2

461519

52.37

92

0.75

94

0.72

4

480749

54.55

96

0.9

99

0.92

说明:

  1. 这里的单表,主键类型为 bigint(20),范围为:1231425-116615530,从主键范围划分看,数据分布均匀。
  2. 对单表如果没有安装主键切分,那么配置通道个数不会提升速度,效果与1个通道一样。
  3. 由于机器性能限制,达到2通道时,CPU已到100%,故4通道时,速度并没有增长
4.2.2 分表测试报告
应机器原因,暂时没有做测试

5 约束限制

5.1 一致性约束

ClickHouse在数据存储划分中属于RDBMS系统,对外可以提供强一致性数据查询接口。例如当一次同步任务启动运行过程中,当该库存在其他数据写入方写入数据时,ClickHouseReader完全不会获取到写入更新数据,这是由于数据库本身的快照特性决定的。关于数据库快照特性,请参看MVCC Wikipedia

上述是在ClickHouseReader单线程模型下数据同步一致性的特性,由于ClickHouseReader可以根据用户配置信息使用了并发数据抽取,因此不能严格保证数据一致性:当ClickHouseReader根据splitPk进行数据切分后,会先后启动多个并发任务完成数据同步。由于多个并发任务相互之间不属于同一个读事务,同时多个并发任务存在时间间隔。因此这份数据并不是完整的一致的数据快照信息。

针对多线程的一致性快照需求,在技术上目前无法实现,只能从工程角度解决,工程化的方式存在取舍,我们提供几个解决思路给用户,用户可以自行选择:

  1. 使用单线程同步,即不再进行数据切片。缺点是速度比较慢,但是能够很好保证一致性。
  2. 关闭其他数据写入方,保证当前数据为静态数据,例如,锁表、关闭备库同步等等。缺点是可能影响在线业务。

5.2 增量数据同步

ClickHouseReader使用JDBC SELECT语句完成数据抽取工作,因此可以使用SELECT…WHERE…进行增量数据抽取,方式有多种:

  • 数据库在线应用写入数据库时,填充modify字段为更改时间戳,包括新增、更新、删除(逻辑删)。对于这类应用,ClickHouseReader只需要WHERE条件跟上一同步阶段时间戳即可。
  • 对于新增流水型数据,ClickHouseReader可以WHERE条件后跟上一阶段最大自增ID即可。

对于业务上无字段区分新增、修改数据情况,ClickHouseReader也无法进行增量数据同步,只能同步全量数据。

5.3 Sql安全性

ClickHouseReader提供querySql语句交给用户自己实现SELECT抽取语句,ClickHouseReader本身对querySql不做任何安全性校验。这块交由DataX用户方自己保证。

DataX ClickHouseWriter


1 快速介绍

数据导入clickhousewriter的插件

2 实现原理

使用clickhousewriter的官方jdbc接口, 批量把从reader读入的数据写入ClickHouse

3 功能说明

3.1 配置样例

job.json
代码语言:javascript复制
{
  "job": {
    "setting": {
        "speed": {
            "channel": 2
        }
    },
    "content": [
      {
        "reader": {
          ...
        },
        "writer": {
            "name": "clickhousewriter",
            "parameter": {
                "username": "default",
                "password": "zifei123",
                "column":["belonger","belonger_type","bs_flag","id","income_asset_code","income_fee","insert_time","logName","order_no","pair_id","price","quantity","trade_date","trade_no","trade_time","update_time"],
                "connection": [
                    {
                        "jdbcUrl": "jdbc:clickhouse://127.0.0.1:8123/default",
                        "table":["XXX"]
                    }
                ]
            }
        }
      }
    ]
  }
}
3.2 参数说明
  • jdbcUrl
  • 描述:ClickHouse的连接地址,目前支持多数据源并行导入,支持随机负载均衡,其格式为:jdbc:clickhouse://ip1:8123,ip2:8123/database
  • 必选:是
  • 默认值:无
  • username
  • 描述:导入数据源的用户名
  • 必选:是
  • 默认值:空
  • password
  • 描述:导入数据源的密码
  • 必选:是
  • 默认值:空
  • batchSize
  • 描述:每次批量数据的条数
  • 必选:否
  • 默认值:2048
  • trySize
  • 描述:失败后重试的次数
  • 必选:否
  • 默认值:30
  • column
  • 描述:elasticsearch所支持的字段类型,样例中包含了全部
  • 必选:是

4 性能报告

4.1 环境准备

  • 总数据量 1.2亿条数据, 每条1.2kb
  • 1个replica,单机模式
4.1.1 数据特征

建表语句:

代码语言:javascript复制
CREATE TABLE default.t_match_record (
       id                      UInt32,
       trade_no                UInt32,
       order_no                UInt32,
       pair_id                 String,
       belonger                String,
       login_name              String,
       belonger_type           String,
       trade_date              Date,
       trade_time              DateTime,
       bs_flag                 String,
       price                   Decimal64(8),
       quantity                UInt32,
       income_asset_code       String,
       income_fee              Decimal64(8),
       insert_time             DateTime,
       update_time             DateTime
)Engine=MergeTree(trade_date,(belonger,pair_id,trade_no,trade_date),8192);

插入记录类似于:

代码语言:javascript复制
INSERT INTO `default`.`t_match_record`(`id`, `trade_no`, `order_no`, `pair_id`, `belonger`, `login_name`, `belonger_type`, `trade_date`, `trade_time`, `bs_flag`, `price`, `quantity`, `income_asset_code`, `income_fee`, `update_time`, `insert_time`) VALUES (141135300, 116615441, 115754819, 'ETH-USDT', '2357246974', '131****4807', '0', '2019-04-21', '2019-04-21 00:34:19', 'B', 113.02000000, 0, 'C10001', 0.00001110, '2018-12-21 00:35:00', '2018-12-21 00:35:00');
INSERT INTO `default`.`t_match_record`(`id`, `trade_no`, `order_no`, `pair_id`, `belonger`, `login_name`, `belonger_type`, `trade_date`, `trade_time`, `bs_flag`, `price`, `quantity`, `income_asset_code`, `income_fee`, `update_time`, `insert_time`) VALUES (141135299, 116615440, 115754793, 'ETH-USDT', '2357246974', '131****4807', '0', '2019-04-21', '2019-04-21 00:34:19', 'S', 113.02000000, 0, 'C10002', 0.00037297, '2018-12-21 00:35:00', '2018-12-21 00:35:00');
4.1.2 机器参数

虚拟机配置如下

  1. cpu: 2物理2逻辑 Intel(R) Core(TM) i5-8600 CPU @ 3.10GHz
  2. mem: 2G
  3. net: 千兆双网卡
4.1.3 DataX jvm 参数

-Xms1024m -Xmx1024m -XX: HeapDumpOnOutOfMemoryError

4.2 测试报告

通道数

批量提交行数

DataX速度(Rec/s)

DataX流量(MB/s)

1

8192

115379

13.09

2

2048

144224

16.37

2

4096

151815

17.23

2

8192

162506

18.44

4

2048

151815

17.23

4

4096

172208

19.54

4

8192

202420

22.97

4.3 测试总结

  • 最好的结果是1-2通道,每次传8192(对当前笔者测试坏境配置而言,瓶颈在CPU上),如果单条数据很大, 请适当减少批量数,防止oom
  • 通过升级硬件,单机写入300K/S不是问题,甚至500K/S,而且ClickHouse也是分布式的,多设置几个分片就可以水平扩展,此时还可以并行写入
  • 当通道为4,批量提交为8192时,笔者测试机器已压榨到极限:物理机CPU100%,磁盘占用100%,网卡流量峰值为360Mbps。

4.4 导入建议

  • 数据应该以尽量大的batch进行写入,如每次写入100,000行,根据机器性能,尝试增加通道数
  • 数据最好跟ClickHouse分区Key分组排序,这样有更好的插入性能

0 人点赞