在V8::Initialize里对堆进行了初始化
代码语言:javascript复制// Setup the object heap
ASSERT(!Heap::HasBeenSetup());
if (!Heap::Setup(create_heap_objects)) {
has_been_setup_ = false;
return false;
}
下面来看Setup函数
代码语言:javascript复制bool Heap::Setup(bool create_heap_objects) {
// Initialize heap spaces and initial maps and objects. Whenever something
// goes wrong, just return false. The caller should check the results and
// call Heap::TearDown() to release allocated memory.
//
// If the heap is not yet configured (eg, through the API), configure it.
// Configuration is based on the flags new-space-size (really the semispace
// size) and old-space-size if set or the initial values of semispace_size_
// and old_generation_size_ otherwise.
// 没有配置过则先设置各空间需要的大小
if (!heap_configured) {
if (!ConfigureHeap(FLAG_new_space_size, FLAG_old_space_size)) return false;
}
// Setup memory allocator and allocate an initial chunk of memory. The
// initial chunk is double the size of the new space to ensure that we can
// find a pair of semispaces that are contiguous and aligned to their size.
// 初始化内存分配器的属性,大小等于新生代和老生代大小。还没分配内存
if (!MemoryAllocator::Setup(MaxCapacity())) return false;
// 分配一块内存
void* chunk
= MemoryAllocator::ReserveInitialChunk(2 * young_generation_size_);
if (chunk == NULL) return false;
// Put the initial chunk of the old space at the start of the initial
// chunk, then the two new space semispaces, then the initial chunk of
// code space. Align the pair of semispaces to their size, which must be
// a power of 2.
ASSERT(IsPowerOf2(young_generation_size_));
// 刚才分配的空间中,老生代在开始位置
Address old_space_start = reinterpret_cast<Address>(chunk);
// 紧接着是新生代,算出大小是young_generation_size_的n倍,值大于old_space_start的最小值
Address new_space_start = RoundUp(old_space_start, young_generation_size_);
// 代码空间等于新生代开始 新生代大小
Address code_space_start = new_space_start young_generation_size_;
// 老生代空间大小
int old_space_size = new_space_start - old_space_start;
/*
因为chunk的空间两倍的young_generation_size_,新生代大小占了一半,
所以还有一半,剩下的一半老生代占了old_space_size,所以剩下的代码区大小
*/
int code_space_size = young_generation_size_ - old_space_size;
/*
|young_generation_size_|
chunk => -----------------------------------
^ ^ ^ ^
| | | |
old new code end
*/
// Initialize new space.
// 分配一个管理新生代地址空间的对象,传入初始值和最大值,因为新生代分配from和to,所以这两个初始化值是每个空间的属性
new_space_ = new NewSpace(initial_semispace_size_, semispace_size_);
if (new_space_ == NULL) return false;
// 设置新生代对象管理的地址范围,young_generation_size_ = 2 * semispace_size_
if (!new_space_->Setup(new_space_start, young_generation_size_)) return false;
// Initialize old space, set the maximum capacity to the old generation
// size.
old_space_ = new OldSpace(old_generation_size_, OLD_SPACE);
if (old_space_ == NULL) return false;
if (!old_space_->Setup(old_space_start, old_space_size)) return false;
// Initialize the code space, set its maximum capacity to the old
// generation size.
code_space_ = new OldSpace(old_generation_size_, CODE_SPACE);
if (code_space_ == NULL) return false;
if (!code_space_->Setup(code_space_start, code_space_size)) return false;
// Initialize map space.
// 存储map的空间
map_space_ = new MapSpace(kMaxMapSpaceSize);
if (map_space_ == NULL) return false;
// Setting up a paged space without giving it a virtual memory range big
// enough to hold at least a page will cause it to allocate.
// 在SetUp里分配内存,并初始化管理内存的对象
if (!map_space_->Setup(NULL, 0)) return false;
lo_space_ = new LargeObjectSpace();
if (lo_space_ == NULL) return false;
if (!lo_space_->Setup()) return false;
if (create_heap_objects) {
// Create initial maps.
if (!CreateInitialMaps()) return false;
if (!CreateApiObjects()) return false;
// Create initial objects
if (!CreateInitialObjects()) return false;
}
LOG(IntEvent("heap-capacity", Capacity()));
LOG(IntEvent("heap-available", Available()));
return true;
}
我们知道v8的堆是分为新生代,老生代,大对象等区域,从代码中我们也看到内存是分为几个部分,我们一个个来看。首先看NewSpace。
代码语言:javascript复制NewSpace::NewSpace(int initial_semispace_capacity,
int maximum_semispace_capacity) {
ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
ASSERT(IsPowerOf2(maximum_semispace_capacity));
maximum_capacity_ = maximum_semispace_capacity;
capacity_ = initial_semispace_capacity;
to_space_ = new SemiSpace(capacity_, maximum_capacity_);
from_space_ = new SemiSpace(capacity_, maximum_capacity_);
// Allocate and setup the histogram arrays if necessary.
#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE 1);
promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE 1);
#define SET_NAME(name) allocated_histogram_[name].set_name(#name);
promoted_histogram_[name].set_name(#name);
INSTANCE_TYPE_LIST(SET_NAME)
#undef SET_NAME
#endif
}
NewSpace的主要代码是新建了两个SemiSpace。一个是to一个是from,这就是我们经常听说的,新生代对象在from和to区域互相转移。我们再看看SemiSpace。
代码语言:javascript复制SemiSpace::SemiSpace(int initial_capacity, int maximum_capacity)
: capacity_(initial_capacity), maximum_capacity_(maximum_capacity),
start_(NULL), age_mark_(NULL) {
}
只是初始化了一些属性。回到最开始,new了一个NewSpace后,执行了该对象的Setup函数。
代码语言:javascript复制// 设置需要管理的地址空间,start是首地址,size是大小
bool NewSpace::Setup(Address start, int size) {
ASSERT(size == 2 * maximum_capacity_);
ASSERT(IsAddressAligned(start, size, 0));
// to区
if (to_space_ == NULL
|| !to_space_->Setup(start, maximum_capacity_)) {
return false;
}
// from区,和to区一人一半
if (from_space_ == NULL
|| !from_space_->Setup(start maximum_capacity_, maximum_capacity_)) {
return false;
}
// 开始地址
start_ = start;
/*
address_mask的高位是地址的有效位,
size是只有一位为一,减一后一变成0,一右边
的全部0位变成1,然后取反,高位的0变成1,再加上size中本来的1,
即从左往右的1位地址有效位
*/
address_mask_ = ~(size - 1);
object_mask_ = address_mask_ | kHeapObjectTag;
object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag;
// 初始化管理的地址的信息
allocation_info_.top = to_space_->low();
allocation_info_.limit = to_space_->high();
mc_forwarding_info_.top = NULL;
mc_forwarding_info_.limit = NULL;
ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
return true;
}
接着来看oldSpace。老生代是新生代对象晋升的地方。
代码语言:javascript复制class OldSpace : public PagedSpace {
public:
// Creates an old space object with a given maximum capacity.
// The constructor does not allocate pages from OS.
explicit OldSpace(int max_capacity, AllocationSpace id)
: PagedSpace(max_capacity, id), free_list_(id) {
}
...
}
代码语言:javascript复制PagedSpace::PagedSpace(int max_capacity, AllocationSpace id) {
ASSERT(id == OLD_SPACE || id == CODE_SPACE || id == MAP_SPACE);
// 先算出小于max_capacity,是页大小的倍数的最大值,再除以页大小则得到页数,再乘以对象的大小则得到总大小
max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
* Page::kObjectAreaSize;
identity_ = id;
accounting_stats_.Clear();
allocation_mode_ = LINEAR;
allocation_info_.top = NULL;
allocation_info_.limit = NULL;
mc_forwarding_info_.top = NULL;
mc_forwarding_info_.limit = NULL;
}
OldSpace也是初始化了一些字段。然后执行Setup。
代码语言:javascript复制bool PagedSpace::Setup(Address start, size_t size) {
if (HasBeenSetup()) return false;
int num_pages = 0;
// Try to use the virtual memory range passed to us. If it is too small to
// contain at least one page, ignore it and allocate instead.
// 分配虚拟内存,算出有效的大小
if (PagesInChunk(start, size) > 0) {
// 分配虚拟内存
first_page_ = MemoryAllocator::CommitPages(start, size, this, &num_pages);
} else {
int requested_pages = Min(MemoryAllocator::kPagesPerChunk,
max_capacity_ / Page::kObjectAreaSize);
// 分配虚拟内存
first_page_ =
MemoryAllocator::AllocatePages(requested_pages, &num_pages, this);
if (!first_page_->is_valid()) return false;
}
// We are sure that the first page is valid and that we have at least one
// page.
ASSERT(first_page_->is_valid());
ASSERT(num_pages > 0);
accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
ASSERT(Capacity() <= max_capacity_);
// 初始化page链表
for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
p->ClearRSet();
}
// Use first_page_ for allocation.
SetAllocationInfo(&allocation_info_, first_page_);
return true;
}
MapSpace和老生代的逻辑一样。最后新建了一个LargeObjectSpace对象。并执行Setup
代码语言:javascript复制LargeObjectSpace::LargeObjectSpace()
: first_chunk_(NULL),
size_(0),
page_count_(0) {}
bool LargeObjectSpace::Setup() {
first_chunk_ = NULL;
size_ = 0;
page_count_ = 0;
return true;
}
最后我们来看MemoryAllocator类。首先执行了Setup。
代码语言:javascript复制bool MemoryAllocator::Setup(int capacity) {
// 页的整数倍
capacity_ = RoundUp(capacity, Page::kPageSize);
// Over-estimate the size of chunks_ array. It assumes the expansion of old
// space is always in the unit of a chunk (kChunkSize) except the last
// expansion.
//
// Due to alignment, allocated space might be one page less than required
// number (kPagesPerChunk) of pages for old spaces.
//
// Reserve two chunk ids for semispaces, one for map space and one for old
// space.
// 最大的chunk数,
max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize)) 4;
if (max_nof_chunks_ > kMaxNofChunks) return false;
size_ = 0;
ChunkInfo info; // uninitialized element.
// 初始化chunks列表和id,max_nof_chunks_大于list的长度的话list会自动扩容
for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
chunks_.Add(info);
free_chunk_ids_.Add(i);
}
top_ = max_nof_chunks_;
return true;
}
chunks_和free_chunk_ids_是MemoryAllocator的属性。List类之前分析过。
代码语言:javascript复制 // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids.
static List<ChunkInfo> chunks_;
static List<int> free_chunk_ids_;
static int max_nof_chunks_;
static int top_;
chunkInfo是一个类
代码语言:javascript复制 class ChunkInfo BASE_EMBEDDED {
public:
ChunkInfo() : address_(NULL), size_(0), owner_(NULL) {}
void init(Address a, size_t s, PagedSpace* o) {
address_ = a;
size_ = s;
owner_ = o;
}
Address address() { return address_; }
size_t size() { return size_; }
PagedSpace* owner() { return owner_; }
private:
Address address_;
size_t size_;
PagedSpace* owner_;
};
执行完Setup接着执行了ReserveInitialChunk函数。
代码语言:javascript复制void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
ASSERT(initial_chunk_ == NULL);
// 新建一个VM对象,分配size的虚拟内存,记录在VM对象
initial_chunk_ = new VirtualMemory(requested);
CHECK(initial_chunk_ != NULL);
//是否已经分配了虚拟地址
if (!initial_chunk_->IsReserved()) {
delete initial_chunk_;
initial_chunk_ = NULL;
return NULL;
}
// We are sure that we have mapped a block of requested addresses.
ASSERT(initial_chunk_->size() == requested);
LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested));
size_ = requested;
// 返回虚拟地址
return initial_chunk_->address();
}
主要逻辑是新建了一个VM对象。VM类定义是
代码语言:javascript复制VirtualMemory::VirtualMemory(size_t size, void* address_hint) {
address_ = mmap(address_hint, size, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd, kMmapFdOffset);
size_ = size;
}
所以一个VM类是管理一片虚拟内存的对象。ReserveInitialChunk函数最后返回分配的虚拟内存首地址。这块内存就是V8的堆内存,即新生代、老生代、大对象等堆内存都在上面。