v8的堆内存初始化

2019-11-24 00:59:02 浏览数 (2)

在V8::Initialize里对堆进行了初始化

代码语言:javascript复制
// Setup the object heap
  ASSERT(!Heap::HasBeenSetup());
  if (!Heap::Setup(create_heap_objects)) {
    has_been_setup_ = false;
    return false;
  }

下面来看Setup函数

代码语言:javascript复制
bool Heap::Setup(bool create_heap_objects) {
  // Initialize heap spaces and initial maps and objects. Whenever something
  // goes wrong, just return false. The caller should check the results and
  // call Heap::TearDown() to release allocated memory.
  //
  // If the heap is not yet configured (eg, through the API), configure it.
  // Configuration is based on the flags new-space-size (really the semispace
  // size) and old-space-size if set or the initial values of semispace_size_
  // and old_generation_size_ otherwise.
  // 没有配置过则先设置各空间需要的大小
  if (!heap_configured) {
    if (!ConfigureHeap(FLAG_new_space_size, FLAG_old_space_size)) return false;
  }

  // Setup memory allocator and allocate an initial chunk of memory.  The
  // initial chunk is double the size of the new space to ensure that we can
  // find a pair of semispaces that are contiguous and aligned to their size.
  // 初始化内存分配器的属性,大小等于新生代和老生代大小。还没分配内存
  if (!MemoryAllocator::Setup(MaxCapacity())) return false;
  // 分配一块内存
  void* chunk
      = MemoryAllocator::ReserveInitialChunk(2 * young_generation_size_);
  if (chunk == NULL) return false;

  // Put the initial chunk of the old space at the start of the initial
  // chunk, then the two new space semispaces, then the initial chunk of
  // code space.  Align the pair of semispaces to their size, which must be
  // a power of 2.
  ASSERT(IsPowerOf2(young_generation_size_));
  // 刚才分配的空间中,老生代在开始位置
  Address old_space_start = reinterpret_cast<Address>(chunk);
  // 紧接着是新生代,算出大小是young_generation_size_的n倍,值大于old_space_start的最小值
  Address new_space_start = RoundUp(old_space_start, young_generation_size_);
  // 代码空间等于新生代开始 新生代大小
  Address code_space_start = new_space_start   young_generation_size_;
  // 老生代空间大小
  int old_space_size = new_space_start - old_space_start;
  /*
    因为chunk的空间两倍的young_generation_size_,新生代大小占了一半,
    所以还有一半,剩下的一半老生代占了old_space_size,所以剩下的代码区大小
  */
  int code_space_size = young_generation_size_ - old_space_size;
  /*
                   |young_generation_size_|   
    chunk =>  -----------------------------------
              ^    ^                      ^      ^
              |    |                      |      |
              old  new                    code   end
  */
  // Initialize new space.
  // 分配一个管理新生代地址空间的对象,传入初始值和最大值,因为新生代分配from和to,所以这两个初始化值是每个空间的属性
  new_space_ = new NewSpace(initial_semispace_size_, semispace_size_);
  if (new_space_ == NULL) return false;
  // 设置新生代对象管理的地址范围,young_generation_size_ = 2 * semispace_size_ 
  if (!new_space_->Setup(new_space_start, young_generation_size_)) return false;

  // Initialize old space, set the maximum capacity to the old generation
  // size.
  old_space_ = new OldSpace(old_generation_size_, OLD_SPACE);
  if (old_space_ == NULL) return false;
  if (!old_space_->Setup(old_space_start, old_space_size)) return false;

  // Initialize the code space, set its maximum capacity to the old
  // generation size.
  code_space_ = new OldSpace(old_generation_size_, CODE_SPACE);
  if (code_space_ == NULL) return false;
  if (!code_space_->Setup(code_space_start, code_space_size)) return false;

  // Initialize map space.
  // 存储map的空间
  map_space_ = new MapSpace(kMaxMapSpaceSize);
  if (map_space_ == NULL) return false;
  // Setting up a paged space without giving it a virtual memory range big
  // enough to hold at least a page will cause it to allocate.
  // 在SetUp里分配内存,并初始化管理内存的对象
  if (!map_space_->Setup(NULL, 0)) return false;

  lo_space_ = new LargeObjectSpace();
  if (lo_space_ == NULL) return false;
  if (!lo_space_->Setup()) return false;

  if (create_heap_objects) {
    // Create initial maps.
    if (!CreateInitialMaps()) return false;
    if (!CreateApiObjects()) return false;

    // Create initial objects
    if (!CreateInitialObjects()) return false;
  }

  LOG(IntEvent("heap-capacity", Capacity()));
  LOG(IntEvent("heap-available", Available()));

  return true;
}

我们知道v8的堆是分为新生代,老生代,大对象等区域,从代码中我们也看到内存是分为几个部分,我们一个个来看。首先看NewSpace。

代码语言:javascript复制
NewSpace::NewSpace(int initial_semispace_capacity,
                   int maximum_semispace_capacity) {
  ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
  ASSERT(IsPowerOf2(maximum_semispace_capacity));
  maximum_capacity_ = maximum_semispace_capacity;
  capacity_ = initial_semispace_capacity;
  to_space_ = new SemiSpace(capacity_, maximum_capacity_);
  from_space_ = new SemiSpace(capacity_, maximum_capacity_);

  // Allocate and setup the histogram arrays if necessary.
#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
  allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE   1);
  promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE   1);

#define SET_NAME(name) allocated_histogram_[name].set_name(#name); 
                       promoted_histogram_[name].set_name(#name);
  INSTANCE_TYPE_LIST(SET_NAME)
#undef SET_NAME
#endif
}

NewSpace的主要代码是新建了两个SemiSpace。一个是to一个是from,这就是我们经常听说的,新生代对象在from和to区域互相转移。我们再看看SemiSpace。

代码语言:javascript复制
SemiSpace::SemiSpace(int initial_capacity, int maximum_capacity)
    : capacity_(initial_capacity), maximum_capacity_(maximum_capacity),
      start_(NULL), age_mark_(NULL) {
}

只是初始化了一些属性。回到最开始,new了一个NewSpace后,执行了该对象的Setup函数。

代码语言:javascript复制
// 设置需要管理的地址空间,start是首地址,size是大小
bool NewSpace::Setup(Address start, int size) {
  ASSERT(size == 2 * maximum_capacity_);
  ASSERT(IsAddressAligned(start, size, 0));
  // to区
  if (to_space_ == NULL
      || !to_space_->Setup(start, maximum_capacity_)) {
    return false;
  }
  // from区,和to区一人一半
  if (from_space_ == NULL
      || !from_space_->Setup(start   maximum_capacity_, maximum_capacity_)) {
    return false;
  }
  // 开始地址
  start_ = start;
  /*
    address_mask的高位是地址的有效位,
    size是只有一位为一,减一后一变成0,一右边
    的全部0位变成1,然后取反,高位的0变成1,再加上size中本来的1,
    即从左往右的1位地址有效位
  */
  address_mask_ = ~(size - 1);
  object_mask_ = address_mask_ | kHeapObjectTag;
  object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag;
  // 初始化管理的地址的信息
  allocation_info_.top = to_space_->low();
  allocation_info_.limit = to_space_->high();
  mc_forwarding_info_.top = NULL;
  mc_forwarding_info_.limit = NULL;

  ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
  return true;
}

接着来看oldSpace。老生代是新生代对象晋升的地方。

代码语言:javascript复制
class OldSpace : public PagedSpace {
 public:
  // Creates an old space object with a given maximum capacity.
  // The constructor does not allocate pages from OS.
  explicit OldSpace(int max_capacity, AllocationSpace id)
      : PagedSpace(max_capacity, id), free_list_(id) {
  }
  ...
 }
代码语言:javascript复制
PagedSpace::PagedSpace(int max_capacity, AllocationSpace id) {
  ASSERT(id == OLD_SPACE || id == CODE_SPACE || id == MAP_SPACE);
  // 先算出小于max_capacity,是页大小的倍数的最大值,再除以页大小则得到页数,再乘以对象的大小则得到总大小
  max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
                  * Page::kObjectAreaSize;
  identity_ = id;
  accounting_stats_.Clear();

  allocation_mode_ = LINEAR;

  allocation_info_.top = NULL;
  allocation_info_.limit = NULL;

  mc_forwarding_info_.top = NULL;
  mc_forwarding_info_.limit = NULL;
}

OldSpace也是初始化了一些字段。然后执行Setup。

代码语言:javascript复制
bool PagedSpace::Setup(Address start, size_t size) {
  if (HasBeenSetup()) return false;

  int num_pages = 0;
  // Try to use the virtual memory range passed to us.  If it is too small to
  // contain at least one page, ignore it and allocate instead.
  // 分配虚拟内存,算出有效的大小
  if (PagesInChunk(start, size) > 0) {
    // 分配虚拟内存
    first_page_ = MemoryAllocator::CommitPages(start, size, this, &num_pages);
  } else {
    int requested_pages = Min(MemoryAllocator::kPagesPerChunk,
                              max_capacity_ / Page::kObjectAreaSize);
    // 分配虚拟内存
    first_page_ =
        MemoryAllocator::AllocatePages(requested_pages, &num_pages, this);
    if (!first_page_->is_valid()) return false;
  }

  // We are sure that the first page is valid and that we have at least one
  // page.
  ASSERT(first_page_->is_valid());
  ASSERT(num_pages > 0);
  accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
  ASSERT(Capacity() <= max_capacity_);
  // 初始化page链表
  for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
    p->ClearRSet();
  }

  // Use first_page_ for allocation.
  SetAllocationInfo(&allocation_info_, first_page_);

  return true;
}

MapSpace和老生代的逻辑一样。最后新建了一个LargeObjectSpace对象。并执行Setup

代码语言:javascript复制
LargeObjectSpace::LargeObjectSpace()
    : first_chunk_(NULL),
      size_(0),
      page_count_(0) {}

bool LargeObjectSpace::Setup() {
  first_chunk_ = NULL;
  size_ = 0;
  page_count_ = 0;
  return true;
}

最后我们来看MemoryAllocator类。首先执行了Setup。

代码语言:javascript复制
bool MemoryAllocator::Setup(int capacity) {
  // 页的整数倍
  capacity_ = RoundUp(capacity, Page::kPageSize);

  // Over-estimate the size of chunks_ array.  It assumes the expansion of old
  // space is always in the unit of a chunk (kChunkSize) except the last
  // expansion.
  //
  // Due to alignment, allocated space might be one page less than required
  // number (kPagesPerChunk) of pages for old spaces.
  //
  // Reserve two chunk ids for semispaces, one for map space and one for old
  // space.
  // 最大的chunk数,
  max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize))   4;
  if (max_nof_chunks_ > kMaxNofChunks) return false;

  size_ = 0;
  ChunkInfo info;  // uninitialized element.
  // 初始化chunks列表和id,max_nof_chunks_大于list的长度的话list会自动扩容
  for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
    chunks_.Add(info);
    free_chunk_ids_.Add(i);
  }
  top_ = max_nof_chunks_;
  return true;
}

chunks_和free_chunk_ids_是MemoryAllocator的属性。List类之前分析过。

代码语言:javascript复制
 // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids.
  static List<ChunkInfo> chunks_;
  static List<int> free_chunk_ids_;
  static int max_nof_chunks_;
  static int top_;

chunkInfo是一个类

代码语言:javascript复制
 class ChunkInfo BASE_EMBEDDED {
   public:
    ChunkInfo() : address_(NULL), size_(0), owner_(NULL) {}
    void init(Address a, size_t s, PagedSpace* o) {
      address_ = a;
      size_ = s;
      owner_ = o;
    }
    Address address() { return address_; }
    size_t size() { return size_; }
    PagedSpace* owner() { return owner_; }

   private:
    Address address_;
    size_t size_;
    PagedSpace* owner_;
  };

执行完Setup接着执行了ReserveInitialChunk函数。

代码语言:javascript复制
void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
  ASSERT(initial_chunk_ == NULL);
  // 新建一个VM对象,分配size的虚拟内存,记录在VM对象
  initial_chunk_ = new VirtualMemory(requested);
  CHECK(initial_chunk_ != NULL);
  //是否已经分配了虚拟地址
  if (!initial_chunk_->IsReserved()) {
    delete initial_chunk_;
    initial_chunk_ = NULL;
    return NULL;
  }

  // We are sure that we have mapped a block of requested addresses.
  ASSERT(initial_chunk_->size() == requested);
  LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested));
  size_  = requested;
  // 返回虚拟地址
  return initial_chunk_->address();
}

主要逻辑是新建了一个VM对象。VM类定义是

代码语言:javascript复制
VirtualMemory::VirtualMemory(size_t size, void* address_hint) {
  address_ = mmap(address_hint, size, PROT_NONE,
                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
                  kMmapFd, kMmapFdOffset);
  size_ = size;
}

所以一个VM类是管理一片虚拟内存的对象。ReserveInitialChunk函数最后返回分配的虚拟内存首地址。这块内存就是V8的堆内存,即新生代、老生代、大对象等堆内存都在上面。

0 人点赞