CNN结构模型一句话概述:从LeNet到ShuffleNet

2019-11-24 17:25:29 浏览数 (1)

由简入繁,由繁入简。已疯……

  1. LeNet:Gradient based learning applied to document recognition
  2. AlexNet:ImageNet Classification with Deep Convolutional Neural Networks
  3. ZFNet:Visualizing and understanding convolutional networks
  4. VGGNet:Very deep convolutional networks for large-scale image recognition
  5. NiN:Network in network
  6. GoogLeNet:Going deeper with convolutions
  7. Inception-v3:Rethinking the inception architecture for computer vision
  8. ResNet:Deep residual learning for image recognition
  9. Stochastic_Depth:Deep networks with stochastic depth
  10. WResNet:Weighted residuals for very deep networks
  11. Inception-ResNet:Inception-v4,inception-resnet and the impact of residual connections on learning
  12. Fractalnet:Ultra-deep neural networks without residuals
  13. WRN:Wide residual networks
  14. ResNeXt:Aggregated Residual Transformations for Deep Neural Networks
  15. DenseNet:Densely connected convolutional networks
  16. PyramidNet:Deep Pyramidal Residual Networks
  17. DPN:Dual Path Networks
  18. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
  19. MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications
  20. ShuffleNet:An Extremely Efficient Convolutional Neural Network for Mobile Devices
  21. LeNet:基于渐变的学习应用于文档识别
  22. AlexNet:具有深卷积神经网络的ImageNet分类
  23. ZFNet:可视化和理解卷积网络
  24. VGGNet:用于大规模图像识别的非常深的卷积网络
  25. NiN:网络中的网络
  26. GoogLeNet:卷入更深入
  27. Inception-v3:重新思考计算机视觉的初始架构
  28. ResNet:图像识别的深度残差学习
  29. Stochastic_Depth:具有随机深度的深层网络
  30. WResNet:非常深的网络的加权残差
  31. Inception-ResNet:Inception-v4,inception-resnet以及剩余连接对学习的影响
  32. Fractalnet:没有残差的超深层神经网络
  33. WRN:宽残留网络
  34. ResNeXt:深层神经网络的聚合残差变换
  35. DenseNet:密集连接的卷积网络
  36. PyramidNet:深金字塔残留网络
  37. DPN:双路径网络
  38. SqueezeNet:AlexNet级准确度,参数减少50倍,模型尺寸小于0.5MB
  39. MobileNets:用于移动视觉应用的高效卷积神经网络
  40. ShuffleNet:移动设备极高效的卷积神经网络

原创文章,转载请注明: 转载自URl-team

本文链接地址: CNN结构模型一句话概述:从LeNet到ShuffleNet

0 人点赞