OpenVINO场景文字检测与识别

2019-06-21 17:01:03 浏览数 (1)

点击上方↑↑↑“OpenCV学堂”关注我

OpenVINO系列文章见文末-推荐阅读

概述

OpenVINO提供的场景文字检测模型准确率是非常的高,完全可以达到实用级别,其实OpenVINO还提供了另外一个场景文字识别的模型,总体使用下来的感觉是没有场景文字检测那么靠谱,而且只支持英文字母与数字识别,不支持中文,不得不说是一个小小遗憾,但是对比较干净的文档图像,它的识别准确率还是相当的高,速度也比较快,基本上都在毫秒基本出结果。

模型介绍

文本识别(OCR)模型采用的网络架构为基础网络 双向LSTM,其中基础网络选择的是VGG16,字母识别是非大小写敏感的,26个字母 10个数字总计36个字符。其网络结构类似如下:

模型输入结构为:

[BxCxHxW]=1x1x32x120 其中B表示批次、C表示通道、H表示高度、W表示宽度

模型输出结果为:

[WxBxL] = 30x1x37 其中B表示批次、W表示输出序列长度、L表示各个37个字符各自得分,其中第37个是#

输出部分的解析基于CTC贪心解码方式。

代码实现

加载模型

代码语言:javascript复制
# 加载IR
log.info("Reading IR...")
net = IENetwork(model=model_xml, weights=model_bin)
text_net = IENetwork(model=text_xml, weights=text_bin)

场景文字检测

代码语言:javascript复制
# image = cv2.imread("D:/images/openvino_ocr.png");
image = cv2.imread("D:/images/cover_01.jpg");
cv2.imshow("image", image)
inf_start = time.time()
in_frame = cv2.resize(image, (w, h))
in_frame = in_frame.transpose((2, 0, 1))  # Change data layout from HWC to CHW
in_frame = in_frame.reshape((n, c, h, w))
exec_net.infer(inputs={input_blob: in_frame})

ROI截取与文字识别

代码语言:javascript复制
x, y, width, height = cv2.boundingRect(contours[c])
roi = image[y-5:y height 10,x-5:x width 10,:]
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
text_roi = cv2.resize(gray, (tw, th))
text_roi = np.expand_dims(text_roi, 2)
text_roi = text_roi.transpose((2, 0, 1))
text_roi = text_roi.reshape((tn, tc, th, tw))
text_exec_net.infer(inputs={input_blob: text_roi})
text_out = text_exec_net.requests[0].outputs[text_out_blob]

CTC解析结果

代码语言:javascript复制
# 解析输出text
ocrstr = ""
prev_pad = False;
for i in range(text_out.shape[0]):
    ctc = text_out[i]
    ctc = np.squeeze(ctc, 0)
    index, prob = ctc_soft_max(ctc)
    if alphabet[index] == '#':
        prev_pad = True
    else:
        if len(ocrstr) == 0 or prev_pad or (len(ocrstr) > 0 and alphabet[index] != ocrstr[-1]):
            prev_pad = False
            ocrstr  = alphabet[index]

输出文字检测与识别结果

代码语言:javascript复制
# 显示识别结果
print("result: %s"%ocrstr)
cv2.drawContours(image, [box], 0, (0, 255, 0), 2)
cv2.putText(image, ocrstr, (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.75, (255, 0, 0), 1)

最后送上整个演示代码

代码语言:javascript复制
def demo():
    # 加载MKLDNN - CPU Target
    log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
    plugin = IEPlugin(device="CPU", plugin_dirs=plugin_dir)
    plugin.add_cpu_extension(cpu_extension)

    # 加载IR
    log.info("Reading IR...")
    net = IENetwork(model=model_xml, weights=model_bin)
    text_net = IENetwork(model=text_xml, weights=text_bin)

    if plugin.device == "CPU":
        supported_layers = plugin.get_supported_layers(net)
        not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
        if len(not_supported_layers) != 0:
            log.error("Following layers are not supported by the plugin for specified device {}:n {}".
                      format(plugin.device, ', '.join(not_supported_layers)))
            log.error("Please try to specify cpu extensions library path in demo's command line parameters using -l "
                      "or --cpu_extension command line argument")
            sys.exit(1)

    # 获取输入输出层
    input_blob = next(iter(net.inputs))
    outputs = iter(net.outputs)

    # 获取多个输出层名称
    out_blob = next(outputs)
    second_blob = next(outputs)
    log.info("Loading IR to the plugin...")
    print("pixel output: %s, link output: %s n"%(out_blob, second_blob))

    text_input_blob = next(iter(text_net.inputs))
    text_out_blob = next(iter(text_net.outputs))
    print("text_out_blob : %s"%text_out_blob)

    # 创建可执行网络
    exec_net = plugin.load(network=net)
    text_exec_net = plugin.load(network=text_net)

    # Read and pre-process input image
    n, c, h, w = net.inputs[input_blob].shape
    tn, tc, th, tw = text_net.inputs[text_input_blob].shape
    del net
    del text_net

    log.info("Starting inference in async mode...")
    log.info("To switch between sync and async modes press Tab button")
    log.info("To stop the demo execution press Esc button")

    image = cv2.imread("D:/images/openvino_ocr.png");
    # image = cv2.imread("D:/images/cover_01.jpg");
    cv2.imshow("image", image)
    inf_start = time.time()
    in_frame = cv2.resize(image, (w, h))
    in_frame = in_frame.transpose((2, 0, 1))  # Change data layout from HWC to CHW
    in_frame = in_frame.reshape((n, c, h, w))
    exec_net.infer(inputs={input_blob: in_frame})
    inf_end = time.time()
    det_time = inf_end - inf_start

    # 获取输出
    res1 = exec_net.requests[0].outputs[out_blob]
    res2 = exec_net.requests[0].outputs[second_blob]

    # 降维
    res1 = np.squeeze(res1, 0)
    res2 = np.squeeze(res2, 0)

    # 矩阵转置
    res1 = res1.transpose((1, 2, 0))
    res2 = res2.transpose((1, 2, 0))

    h, w = res1.shape[:2]
    print(res1.shape)
    print(res2.shape)

    # 文本与非文本像素
    pixel_mask = np.zeros((h, w), dtype=np.uint8)

    # 解析输出结果
    res1 = soft_max(res1)

    # 像素分割
    for row in range(h):
        for col in range(w):
            pv2 = res1[row, col, 1]
            if pv2 > 0.50:
                pixel_mask[row, col] = 255

    se = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
    mask = cv2.morphologyEx(pixel_mask, cv2.MORPH_CLOSE, se)
    cv2.imshow("text mask", mask)
    cv2.imwrite("D:/mask.png", mask)

    # 后处理,检测框
    h, w = image.shape[:2]
    mask = cv2.resize(mask, (w, h))
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for c in range(len(contours)):
        rect = cv2.minAreaRect(contours[c])
        box = cv2.boxPoints(rect)
        box = np.int0(box)

        x, y, width, height = cv2.boundingRect(contours[c])
        roi = image[y-5:y height 10,x-5:x width 10,:]
        gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
        text_roi = cv2.resize(gray, (tw, th))
        text_roi = np.expand_dims(text_roi, 2)
        text_roi = text_roi.transpose((2, 0, 1))
        text_roi = text_roi.reshape((tn, tc, th, tw))
        text_exec_net.infer(inputs={input_blob: text_roi})
        text_out = text_exec_net.requests[0].outputs[text_out_blob]

        # 解析输出text
        ocrstr = ""
        prev_pad = False;
        for i in range(text_out.shape[0]):
            ctc = text_out[i]
            ctc = np.squeeze(ctc, 0)
            index, prob = ctc_soft_max(ctc)
            if alphabet[index] == '#':
                prev_pad = True
            else:
                if len(ocrstr) == 0 or prev_pad or (len(ocrstr) > 0 and alphabet[index] != ocrstr[-1]):
                    prev_pad = False
                    ocrstr  = alphabet[index]

        # 显示识别结果
        print("result: %s"%ocrstr)
        cv2.drawContours(image, [box], 0, (0, 255, 0), 2)
        cv2.putText(image, ocrstr, (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.75, (255, 0, 0), 1)

    inf_time_message = "Inference time: {:.3f} ms, FPS:{:.3f}".format(det_time * 1000, 1000 / (det_time * 1000))
    cv2.putText(image, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 0), 1)
    cv2.imshow("result", image)
    cv2.imwrite("D:/result.png", image)
    cv2.waitKey(0)

    # 释放资源
    cv2.destroyAllWindows()
    del exec_net
    del plugin

演示效果

OCR识别输出 - 效果一

OCR识别输出 - 效果二

总结:

发现对特定的应用场景,特别是一些文档化的图像,这个模型识别还比较准确,对很多其它的应用场景,比如身份证、各种卡号识别,发现误识别率很高,现如这些场景需要专项训练的模型!

0 人点赞