[开发技巧]·keras如何冻结网络层
在使用keras进行进行finetune有时需要冻结一些网络层加速训练
keras中提供冻结单个层的方法:layer.trainable = False
这个应该如何使用?下面给大家一些例子
1.冻结model所有网络层
代码语言:javascript复制base_model = DenseNet121(include_top=False, weights="imagenet",input_shape=(224, 224, 3))
for layer in base_model.layers:
layer.trainable = False
2.冻结model某些网络层
在keras中除了从model.layers取得layer,我们还可以通过model.get_layer(layer_name)获取。
代码语言:javascript复制base_model = VGG19(weights='imagenet')
base_model.get_layer('block4_pool').trainable = False
你可能会疑问,我不知道layer_name该怎么办呢?答案是通过model.summary()输出一下,
如下所示,最左面一列就是layer_name(注意是括号外面的><)
代码语言:javascript复制__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
__________________________________________________________________________________________________
NASNet (Model) (None, 7, 7, 1056) 4269716 input_1[0][0]
__________________________________________________________________________________________________
resnet50 (Model) (None, 7, 7, 2048) 23587712 input_1[0][0]
__________________________________________________________________________________________________
densenet121 (Model) (None, 7, 7, 1024) 7037504 input_1[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_1 (Glo (None, 1056) 0 NASNet[1][0]
__________________________________________________________________________________________________
global_average_pooling2d_2 (Glo (None, 2048) 0 resnet50[1][0]
__________________________________________________________________________________________________
global_average_pooling2d_3 (Glo (None, 1024) 0 densenet121[1][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 4128) 0 global_average_pooling2d_1[0][0]
global_average_pooling2d_2[0][0]
global_average_pooling2d_3[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 4128) 0 concatenate_5[0][0]
__________________________________________________________________________________________________
classifier (Dense) (None, 200) 825800 dropout_1[0][0]
==================================================================================================
Total params: 35,720,732
Trainable params: 825,800
Non-trainable params: 34,894,932
__________________________________________________________________________________________________
None
hope this helps