Linux 性能调优之CPU上下文切换

2024-09-12 14:49:36 浏览数 (3)

写在前面


  • 博文内容为 Linux 性能指标 CPU 上下文切换认知
  • 内容涉及:
    • 上下文认知,发生上下文切换的场景有哪些
    • 上下文指标信息查看,内核上下文切换事件跟踪,系统上下文切换统计
    • 上下文异常场景分析,CPU亲和性配置优化上下文
  • 理解不足小伙伴帮忙指正 :),生活加油

99%的焦虑都来自于虚度时间和没有好好做事,所以唯一的解决办法就是行动起来,认真做完事情,战胜焦虑,战胜那些心里空荡荡的时刻,而不是选择逃避。不要站在原地想象困难,行动永远是改变现状的最佳方式


上下文认知

什么是CPU上下文切换?

通俗的话讲,给定的CPU在某个时间点仅可以运行一个进程,为了制造出单处理器同时运行多个任务的假象(实际受限系统调度器:调度策略 调度优先级), 每个进程完成他们的任务一般都需要停止和启动很多次。 Linux内核就要不断地在不同的进程间切换。这种不同进程间的切换称为上下文切换

上下文切换时, CPU要保存旧进程的所有上下文信息,并取出新进程的所有上下文信息。上下文中包含了 Linux 跟踪新进程的大量信息,其中包括: 进程正在执行的指令,分配给进程的内存,进程打开的文件

所以实际上上下文切换涉及大量信息的移动,上下文切换的开销可以是相当大的

上下文切换可以是内核调度的结果。简单来讲,为了保证公平地给每个进程分配处理器时间,内核会周期性地中断正在运行的进程,在适当的情况下,内核调度器会决定开始另一个进程,而不是让当前进程继续执行。

每次这种周期性中断或定时发生时,系统都可能进行上下文切换。每秒定时中断的次数与架构和内核版本有关

一个检查中断频率的简单方法是用 /proc/interrupts 文件,它可以确定已知时长内发生的中断次数

通过这个命令,可以观察到5秒钟内定时器中断次数的变化

代码语言:javascript复制
┌──[root@vms81.liruilongs.github.io]-[~]
└─$cat /proc/interrupts  | grep time; sleep 5 ;cat /proc/interrupts | grep time
   0:        337          0   IO-APIC-edge      timer
 LOC:    9896498    9871317   Local timer interrupts
   0:        337          0   IO-APIC-edge      timer
 LOC:    9901529    9876213   Local timer interrupts
┌──[root@vms81.liruilongs.github.io]-[~]
└─$

LOC 即为本地定时器中断

上面定时器的启动频率为 (9896498-9901529)/5 =1000,即每秒要中断 1000次,同时也可以理解为内核在 sleep 进程执行中,每秒发生 1000 次 CPU 定时中断

如果上下文切换明显多于定时器中断,那么这些切换极有可能是由I/O请求或其他长时间运行的系统调用(如休眠)造成的。当应用请求的操作不能立即完成时,内核启动该操作,保存请求进程,并尝试切换到另一个已就绪进程。这能让处理器尽量保持忙状态。

代码语言:javascript复制
#上下文切换数量
cs=$(vmstat 1 1 | awk 'NR==3{print $12}')

实际中调度策略不同,定时器中断的意义也不一样:

实时调度策略 :如FIFO(先进先出)和时间片轮转(RR),这些策略依赖于定时中断来确保实时进程的及时执行,但同时也需要考虑非实时进程的调度以避免饥饿

普通调度策略 :如CFS,定时中断用于动态调整时间片,以实现公平性和效率的平衡

什么是上下文

当多个进程进行切换时,内核会包含前一个和后一个进程的相关信息。每次一个进程让出CPU时,内核都会存储进程当前的操作状态,当以后该进程再次被调度回CPU时,可以从相同的位置恢复操作。

这些操作状态数据又被称为上下文,包含CPU的寄存器数据以及程序的计数器数据

  • CPU 寄存器,是 CPU 内置的容量小、但速度极快的内存
  • 程序计数器,则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。

给进程切换CPU时间片,就是所谓的上下文切换。CPU 上下文切换,就是先把前一个任务的 CPU 上下文(也就是 CPU 寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务

保存下来的上下文,会存储在系统内核中,并在任务重新被分配到时间片时再次被加载,这样看起来系统实际中同时运行多个任务,具体和对应的CPU 调度策略有关系,不同调度策略分配时间片策略不同。

只有进程会发生上下文切换么?

实际上不仅进程会发生CPU上下文切换,线程,协程中断也会发生CPU上下文切换。CPU上下文切换包括:

  • 进程上下文切换
  • 线程上下文切换
  • 协程上下文切换
  • 中断上下文切换

进程上下文切换涉及到虚拟内存、栈、全局变量用户空间资源,以及内核堆栈、寄存器等内核空间的状态。这种切换发生在进程调度时,例如:

  • CPU时间片用完
  • 系统资源不足
  • 进程通过 sleep 函数主动挂起
  • 高优先级进程抢占时间片
  • 硬件中断时CPU上的进程被挂起转而执行内核中的中断服务
进程上下文切换

Linux 按照特权等级,把进程的运行空间分为内核空间用户空间,分别对应着下图中, CPU 特权等级Ring 0Ring 3

在这里插入图片描述

  • 内核空间(Ring 0)具有最高权限,可以直接访问所有资源;
  • 用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。

进程既可以在用户空间运行,又可以在内核空间中运行。

进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态

从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容.

这里可以通过 bcc 或者 perf 工具来跟踪系统调用

采集数据

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$perf record -g $(which cat) test.log 
Holler
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.012 MB perf.data (2 samples) ]
┌──[root@liruilongs.github.io]-[~] 
└─$

输出数据

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$perf script > perf_script.txt
┌──[root@liruilongs.github.io]-[~] 
└─$cat perf_script.txt 
cat  3070   403.637613:     250000 cpu-clock:pppH: 
 ffffffffa2afb616 vma_interval_tree_remove 0x156 ([kernel.kallsyms])
 ffffffffa2b12068 unlink_file_vma 0x48 ([kernel.kallsyms])
 ffffffffa2b05da1 free_pgtables 0x71 ([kernel.kallsyms])
 ffffffffa2b1176a unmap_region 0x10a ([kernel.kallsyms])
 ffffffffa2b13bcd __do_munmap 0x20d ([kernel.kallsyms])
 ffffffffa2b156f6 mmap_region 0x2f6 ([kernel.kallsyms])
 ffffffffa2b15de0 do_mmap 0x380 ([kernel.kallsyms])
 ffffffffa2ae69b8 vm_mmap_pgoff 0xd8 ([kernel.kallsyms])
 ffffffffa2b131b8 ksys_mmap_pgoff 0x58 ([kernel.kallsyms])
 ffffffffa284b2a3 __x64_sys_mmap 0x33 ([kernel.kallsyms])
 ffffffffa2805089 x64_sys_call 0x3b9 ([kernel.kallsyms])
 ffffffffa35c2f36 do_syscall_64 0x56 ([kernel.kallsyms])
 ffffffffa36000df entry_SYSCALL_64_after_hwframe 0x67 ([kernel.kallsyms])
     7ff93a740cb7 mmap64 0x17 (/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2)
     7ff93a724601 _dl_map_object 0x1f1 (/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2)

cat  3070   403.637863:     250000 cpu-clock:pppH: 
 ffffffffa28a5a6f do_user_addr_fault 0x2ff ([kernel.kallsyms])
 ffffffffa35c6ed7 exc_page_fault 0x77 ([kernel.kallsyms])
 ffffffffa3600bb7 asm_exc_page_fault 0x27 ([kernel.kallsyms])
 ffffffffa2eb6130 copy_user_generic_unrolled 0xa0 ([kernel.kallsyms])
 ffffffffa2ac3705 filemap_read 0x165 ([kernel.kallsyms])
 ffffffffa2ac3a62 generic_file_read_iter 0xe2 ([kernel.kallsyms])
 ffffffffa2c6ecfb ext4_file_read_iter 0x5b ([kernel.kallsyms])
 ffffffffa2b9b65a new_sync_read 0x10a ([kernel.kallsyms])
 ffffffffa2b9bff3 vfs_read 0x103 ([kernel.kallsyms])
 ffffffffa2b9eac7 ksys_read 0x67 ([kernel.kallsyms])
 ffffffffa2b9eb69 __x64_sys_read 0x19 ([kernel.kallsyms])
 ffffffffa2806a8a x64_sys_call 0x1dba ([kernel.kallsyms])
 ffffffffa35c2f36 do_syscall_64 0x56 ([kernel.kallsyms])
 ffffffffa36000df entry_SYSCALL_64_after_hwframe 0x67 ([kernel.kallsyms])
     7ff93a5f37e2 read 0x12 (/usr/lib/x86_64-linux-gnu/libc.so.6)

┌──[root@liruilongs.github.io]-[~] 
└─$

也可以使用 strace 命令

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$strace cat test.log 
execve("/usr/bin/cat", ["cat", "test.log"], 0x7ffcc8683ce8 /* 35 vars */) = 0
brk(NULL)                               = 0x55f45d320000
arch_prctl(0x3001 /* ARCH_??? */, 0x7fffbabbec00) = -1 EINVAL (无效的参数)
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f05f1400000
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (没有那个文件或目录)
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=62779, ...}, AT_EMPTY_PATH) = 0
mmap(NULL, 62779, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f05f13f0000
close(3)                                = 0
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "177ELF21133>1P2372"..., 832) = 832
pread64(3, "64@@@"..., 784, 64) = 784
pread64(3, "4 5GNU230043"..., 48, 848) = 48
pread64(3, "4243GNUI173572043$f2212039x324224323236S"..., 68, 896) = 68
newfstatat(3, "", {st_mode=S_IFREG|0755, st_size=2220400, ...}, AT_EMPTY_PATH) = 0
pread64(3, "64@@@"..., 784, 64) = 784
mmap(NULL, 2264656, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f05f11c7000
mprotect(0x7f05f11ef000, 2023424, PROT_NONE) = 0
mmap(0x7f05f11ef000, 1658880, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x28000) = 0x7f05f11ef000
mmap(0x7f05f1384000, 360448, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1bd000) = 0x7f05f1384000
mmap(0x7f05f13dd000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x215000) = 0x7f05f13dd000
mmap(0x7f05f13e3000, 52816, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f05f13e3000
close(3)                                = 0
mmap(NULL, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f05f11c4000
arch_prctl(ARCH_SET_FS, 0x7f05f11c4740) = 0
set_tid_address(0x7f05f11c4a10)         = 3659
set_robust_list(0x7f05f11c4a20, 24)     = 0
rseq(0x7f05f11c50e0, 0x20, 0, 0x53053053) = 0
mprotect(0x7f05f13dd000, 16384, PROT_READ) = 0
mprotect(0x55f45d2aa000, 4096, PROT_READ) = 0
mprotect(0x7f05f143a000, 8192, PROT_READ) = 0
prlimit64(0, RLIMIT_STACK, NULL, {rlim_cur=8192*1024, rlim_max=RLIM64_INFINITY}) = 0
munmap(0x7f05f13f0000, 62779)           = 0
getrandom("xc0x67xb1x59x59xe4xa9xdc", 8, GRND_NONBLOCK) = 8
brk(NULL)                               = 0x55f45d320000
brk(0x55f45d341000)                     = 0x55f45d341000
openat(AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=6213280, ...}, AT_EMPTY_PATH) = 0
mmap(NULL, 6213280, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f05f0bd7000
close(3)                                = 0
newfstatat(1, "", {st_mode=S_IFCHR|0600, st_rdev=makedev(0x88, 0), ...}, AT_EMPTY_PATH) = 0
openat(AT_FDCWD, "test.log", O_RDONLY)  = 3
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=7, ...}, AT_EMPTY_PATH) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
mmap(NULL, 139264, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f05f0bb5000
read(3, "Hollern", 131072)             = 7
write(1, "Hollern", 7Holler
)                 = 7
read(3, "", 131072)                     = 0
munmap(0x7f05f0bb5000, 139264)          = 0
close(3)                                = 0
close(1)                                = 0
close(2)                                = 0
exit_group(0)                           = ?
    exited with 0    
┌──[root@liruilongs.github.io]-[~] 
└─$

内核函数调用的过程有没有发生 CPU 上下文的切换呢?

CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。

系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。所以,一次系统调用的过程,其实是发生了两次 CPU 上下文切换。

系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。这跟我们通常所说的进程上下文切换是不一样的

进程上下文切换,是指从一个进程切换到另一个进程运行。而系统调用过程中一直是同一个进程在运行。

系统调用过程通常称为特权模式切换,而不是上下文切换。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免的。

进程上下文切换跟系统调用又有什么区别呢?

进程是由内核来管理调度的,进程的切换只能发生的内核态,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。

进程的上下文切换就比系统调用时多了一步:

在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。

每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也是导致平均负载升高的一个重要因素,尤其是这 CPU 处于饱和状态的时候。

Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。

当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。

什么时候会切换进程上下文?

进程切换时需要切换上下文,默认调度策略情况下,Linux 为每个 CPU 维护了一个就绪队列,将活跃进程(即正在运行和正在等待 CPU 的进程)按照优先级和等待 CPU 的时间排序,然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。

进程在什么时候才会被调度到 CPU 上运行呢?

实际上调度策略不同,优先级不同,调度结果也不同,大多数情况下:

  • 当某个进程的分配的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。
  • 进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行。
  • 当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。
  • 当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。
  • 发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

进程本质上是由线程构成,当一个进程为单线程时,可以理解线程就是进程。

线程上下文切换

线程与进程最大的区别在于:

  • 线程是调度的基本单位(所谓内核中的任务调度,实际上的调度对象是线程,)
  • 进程则是资源拥有的基本单位(即系统资源的申请,给线程提供了虚拟内存、全局变量等资源)

对于线程和进程,我们可以这么理解:

  • 当进程只有一个线程时,可以认为进程就等于线程。
  • 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不涉及的。
  • 线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。

线程的上下文切换实际上就可以分为两种情况:

  • 前后两个线程属于不同的进程,切换过程和进程切换时一样的
  • 前后两个线程属于同一个进程,虚拟内存和全局变量共享,只需要切换线程的私有数据。

所以理论上从上下文切换的角度考虑,多线程的资源消耗小与多进程

既然线程可以共享进程的数据,重而在上下文切换节省切换时数据的保存和刷新,那么是否存在可以共享线程的数据,重而节省更多的时间,这就是协程。

协程的上下文切换

协程是一种用户态的轻量级线程,完全由用户程序控制,协程创建和销毁的开销非常小(共享进程的内存空间和资源,不需要操作系统分配独立的栈空间和寄存器状态),因为它们不需要内核介入

协程间的上下文切换完全在用户态进行,开销非常小。实际上如果为单线程的协程上下文切换,如果协程不执行系统调用,是不会涉及到CPU上下文切换的。当协程执行系统调用时,会涉及到从用户态切换到内核态

实际的协程上下文切换分为:

  • 多个线程的不同协程上下文切换
  • 多个进程的不同协程上下文切换

协程的上下文切换开销远小于线程,因为:

  • 线程切换涉及到更多的状态信息,如所有寄存器、线程堆栈等,
  • 协程切换主要是保存和恢复少量的状态信息,如程序计数器和少量寄存器
中断上下文切换

处理器还周期性地从硬件设备接收中断。当设备有事件需要内核处理时,它通常就会触发这些中断。

比如,如果磁盘控制器刚刚完成从驱动器取数据块的操作,并准备好提供给内核,那么磁盘控制器就会触发一个中断。对内核收到的每个中断,如果已经有相应的已注册的中断处理程序,就运行该程序,否则将忽略这个中断。

中断处理程序在系统中具有很高的运行优先级,并且通常执行速度也很快,查看/proc/interrupts文件可以显示出哪些CPU上触发了哪些中断。

代码语言:javascript复制
┌──[root@vms81.liruilongs.github.io]-[~]
└─$cat /proc/interrupts
            CPU0       CPU1
   0:        337          0   IO-APIC-edge      timer
   1:         10          0   IO-APIC-edge      i8042
   8:          1          0   IO-APIC-edge      rtc0
   9:          0          0   IO-APIC-fasteoi   acpi
  12:         16          0   IO-APIC-edge      i8042
  14:          0          0   IO-APIC-edge      ata_piix
  15:          0          0   IO-APIC-edge      ata_piix
  17:      57939          0   IO-APIC-fasteoi   ioc0
  18:         14       9800   IO-APIC-fasteoi   ens32
  24:          0          0   PCI-MSI-edge      PCIe PME, pciehp
  25:          0          0   PCI-MSI-edge      PCIe PME, pciehp
  26:          0          0   PCI-MSI-edge      PCIe PME, pciehp
  27:          0          0   PCI-MSI-edge      PCIe PME, pciehp
.......................
 THR:          0          0   Threshold APIC interrupts
 DFR:          0          0   Deferred Error APIC interrupts
 MCE:          0          0   Machine check exceptions
 MCP:         37         37   Machine check polls
 ERR:          0
 MIS:          0
 PIN:          0          0   Posted-interrupt notification event
 PIW:          0          0   Posted-interrupt wakeup event
┌──[root@vms81.liruilongs.github.io]-[~]
└─$

快速查看中断的次数:

代码语言:javascript复制
#发生中断数量
    irq=$(vmstat 1 1 | awk 'NR==3{print $11}')

中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源

中断上下文切换,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。

可以这么理解,中断上下文切换发生的时候CPU并没有离开内核态,所以不需要用户态的东西,只是需要部分内核态数据。所以中断上下文切换相比进程上下文切换消耗更少的资源

对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。

即便是保存少量的内核态数据,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。

上下文指标信息查看

内核上下文切换事件跟踪

通过确定上下文切换的位置,可以分析哪些进程或线程导致了频繁的上下文切换,从而优化系统性能。

确定内核中发生上下文切换的位置,可以使用 sched:sched_switch 内核跟踪点

sched:sched_switchBPF(Berkeley Packet Filter)工具集中用于跟踪内核上下文切换事件的跟踪点

代码语言:javascript复制
# ./stackcount -P t:sched:sched_switch
  __schedule
  schedule
  worker_thread
  kthread
  ret_from_fork
    kworker/0:2 [25482]
    1

  __schedule
  schedule
  schedule_hrtimeout_range_clock
  schedule_hrtimeout_range
  ep_poll
  SyS_epoll_wait
  entry_SYSCALL_64_fastpath
  epoll_wait
  Lsun/nio/ch/SelectorImpl;::lockAndDoSelect
  Lsun/nio/ch/SelectorImpl;::select
  Lio/netty/channel/nio/NioEventLoop;::select
  Lio/netty/channel/nio/NioEventLoop;::run
  Interpreter
  Interpreter
  call_stub
  JavaCalls::call_helper(JavaValue*, methodHandle*, JavaCallArguments*, Thread*)
  JavaCalls::call_virtual(JavaValue*, KlassHandle, Symbol*, Symbol*, JavaCallArguments*, Thread*)
  JavaCalls::call_virtual(JavaValue*, Handle, KlassHandle, Symbol*, Symbol*, Thread*)
  thread_entry(JavaThread*, Thread*)
  JavaThread::thread_main_inner()
  JavaThread::run()
  java_start(Thread*)
  start_thread
    java [4996]
    1

... (omitted for brevity)

  __schedule
  schedule
  schedule_preempt_disabled
  cpu_startup_entry
  xen_play_dead
  arch_cpu_idle_dead
  cpu_startup_entry
  cpu_bringup_and_idle
    swapper/1 [0]
    289

从这些栈跟踪中,我们可以得出以下结论:

  • 有一个工作线程(kworker)和一个Java进程导致了上下文切换。
  • 有一个CPU大部分时间都是空闲的(swapper/1 [0])

运行命令(进程)的上下文切换次数统计

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$yum -y install perf
........

使用了 Linux 的 perf stat命令来收集关于 sleep 2 命令执行期间的性能计数器统计信息

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$perf stat sleep 2

 Performance counter stats for 'sleep 2':

             12.04 msec task-clock                #    0.006 CPUs utilized
                 1      context-switches          #    0.083 K/sec
                 1      cpu-migrations            #    0.083 K/sec
                74      page-faults               #    0.006 M/sec
         3,328,860      cycles                    #    0.276 GHz
                 0      instructions              #    0.00  insn per cycle
           289,196      branches                  #   24.020 M/sec
            12,686      branch-misses             #    4.39% of all branches

       2.034208658 seconds time elapsed

       0.000000000 seconds user
       0.032226000 seconds sys


┌──[root@liruilongs.github.io]-[~]
└─$

统计信息的解释:

  • task-clock:任务时钟,表示命令执行的总时间(以毫秒为单位)。
  • context-switches:上下文切换次数,表示在命令执行期间发生的进程上下文切换次数。
  • cpu-migrations:CPU 迁移次数,表示在命令执行期间发生的进程在不同 CPU 之间的迁移次数。
  • page-faults:缺页错误次数,表示在命令执行期间发生的内存页面错误次数(可以简单理解为类似缓存穿透)。
  • cycles:CPU 周期数,表示命令执行期间的 CPU 周期数。
  • instructions:指令数,表示命令执行期间执行的指令数。
  • branches:分支数(分支预测的次数),表示命令执行期间执行的分支指令数。
  • branch-misses:分支未命中数,表示命令执行期间发生的分支预测错误次数。

汇总数据:

  • seconds time elapsed: 命令的总执行时间
  • seconds user:用户空间时间
  • seconds user:系统空间时间

sleep 2 命令主要在内核态执行,用户态执行时间几乎为 0。任务执行期间发生了 1 次上下文切换1 次 CPU 迁移。任务执行期间发生了 74 次页面错误。 由于 sleep 命令本身不执行很多指令,因此指令数为 0,分支缺失率为 4.39%

使用了 Linux 的 perf 命令来收集关于 dd if=/dev/zero of=/dev/null bs=2048 count=100000 命令执行期间的性能计数器统计信息。

代码语言:javascript复制

┌──[root@liruilongs.github.io]-[~] 
└─$dd if=/dev/zero of=/dev/null bs=2048 count=100000
记录了100000 0 的读入
记录了100000 0 的写出
204800000字节(205 MB,195 MiB)已复制,0.0863494 s,2.4 GB/s
┌──[root@liruilongs.github.io]-[~] 
└─$perf stat !!
perf stat dd if=/dev/zero of=/dev/null bs=2048 count=100000
记录了100000 0 的读入
记录了100000 0 的写出
204800000字节(205 MB,195 MiB)已复制,0.0960513 s,2.1 GB/s

 Performance counter stats for 'dd if=/dev/zero of=/dev/null bs=2048 count=100000':

             96.63 msec task-clock                #    0.993 CPUs utilized          
                 3      context-switches          #   31.046 /sec                   
                 1      cpu-migrations            #   10.349 /sec                   
                86      page-faults               #  889.991 /sec                   
   <not supported>      cycles                                                      
   <not supported>      instructions                                                
   <not supported>      branches                                                    
   <not supported>      branch-misses                                               

       0.097339885 seconds time elapsed

       0.052670000 seconds user
       0.044566000 seconds sys


┌──[root@liruilongs.github.io]-[~] 
└─$

系统级上下文切换统计

vmstat 是一个用于报告虚拟内存统计信息的工具,也可以用来监控系统的整体性能和健康状况

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$vmstat -S m 1 3
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 1  0      0  32658      9   3600    0    0     7     1   31   53  0  0 100  0  0
 0  0      0  32658      9   3600    0    0     0     0  440  794  0  0 100  0  0
 0  0      0  32658      9   3600    0    0     0     0  425  774  0  0 100  0  0
┌──[root@liruilongs.github.io]-[~]
└─$

procs 列显示了进程和线程的相关统计信息。

  • r 表示正在运行的进程或线程数。
  • b 表示处于阻塞状态的进程或线程数。

system 列显示了系统调用和上下文切换的相关统计信息。

  • in 表示每秒的中断数
  • cs 表示每秒的上下文切换数。

cpu 列显示了 CPU 的使用情况统计信息。

  • us 表示用户空间进程的 CPU 使用率。
  • sy 表示系统空间进程的 CPU 使用率。
  • id 表示 CPU 空闲时间的百分比。
  • wa 表示等待 I/O 操作的 CPU 时间的百分比。
  • st 表示被虚拟化软件(如果有)偷取的 CPU 时间的百分比。

pcp dstat 是 Performance Co-Pilot 的一个工具,它结合了dstat和pmval命令的功能,提供了实时系统性能监控的功能。

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$ pcp dstat
You did not select any stats, using -cdngy by default.
----total-usage---- -dsk/total- -net/total- ---paging-- ---system--
usr sys idl wai stl| read  writ| recv  send|  in   out | int   csw
  0   0  97   0   0|   0     0 | 126   637 |   0     0 |1036  1111
  0   0  95   2   0|   0     0 |  66   302 |   0     0 |1135  1256
  0   0  96   0   0|4094B    0 |  66   318 |   0     0 |1368  1554
  0   0  98   0   0|   0     0 | 186   318 |   0     0 | 940  1013
  0   0  96   0   0|   0     0 | 126   310 |   0     0 |1180  1302
  1   0  96   1   0|4098B    0 |  66   310 |   0     0 |1114  1186
  1   0  97   0   0|   0     0 | 186   326 |   0     0 |1225  1346
  0   0  98   0   0|   0     0 | 126   318 |   0     0 |1070  1150
  0   0  97   0   0|   0     0 |  66   310 |   0     0 |1005  1093
  1   0  91   1   0|4099B    0 | 186   310 |   0     0 |2564  3255
  1   0  93   0   0|  92k   56k| 126   326 |   0     0 |1807  2085
.......
┌──[root@liruilongs.github.io]-[~]
└─$
  • CPU 使用情况(usr:用户态 CPU 使用率,sys:内核态 CPU 使用率,idl:空闲 CPU 使用率,wai:等待 I/O 的 CPU 使用率,stl:偷取的 CPU 使用率)
  • 磁盘读写统计(read:读取的字节数,writ:写入的字节数)
  • 网络接收和发送统计(recv:接收的字节数,send:发送的字节数)
  • 分页统计(in:页面读取数,out:页面写入数)
  • 系统调用和上下文切换统计(int:系统调用次数,csw:上下文切换次数

pcp dstat 命令默认选项是 -cdngy ,等同于 --cpu,-disk,--net,--page,--sys,可以同时查看多组数据

也可以查看指定的指标信息,查看 CPU 和进程信息,每个 2 秒获取一次数据,获取 8 组数据

代码语言:javascript复制
[root@workstation ~]# pkill  sha1sum
[1]   Terminated              sha1sum /dev/zero
[root@workstation ~]# pcp dstat --time --cpu --proc 2 8
----system---- ----total-usage---- ---procs---
     time     |usr sys idl wai stl|run blk new
17-09 05:03:50|                   |  0   0
17-09 05:03:52|  0   0 100   0   0|  0   0   0
17-09 05:03:54|  1   0 100   0   0|  0   0   0
17-09 05:03:56|  0   0 100   0   0|  0   0   0
17-09 05:03:58|  0   0 100   0   0|  0   0   0
17-09 05:04:00|  0   0 100   0   0|  0   0   0
17-09 05:04:02|  0   0 100   0   0|  0   0   0
17-09 05:04:04|  0   0 100   0   0|  0   0   0

指标说明:

  • 时间戳(time):显示采样时的日期和时间。
  • CPU 使用情况(usr:用户态 CPU 使用率,sys:内核态 CPU 使用率,idl:空闲 CPU 使用率,wai:等待 I/O 的 CPU 使用率,stl:偷取的 CPU 使用率)。
  • 进程统计信息(run:运行中的进程数,blk:被阻塞的进程数,new:新进程数)。

也可以使用短命令的方式:-c:显示 CPU 使用情况。

自愿非自愿上下文切换查看

上下文切换可以分为:

  • voluntary(自愿)
  • involuntary(非自愿)

查询单个进程:

通过查看/proc/{PID}/status文件,我们可以看到某个进程的自愿和非自愿上下文切换的次数。

代码语言:javascript复制
┌──[root@vms99.liruilongs.github.io]-[~]
└─$cat /proc/$$/status | grep "voluntary"
voluntary_ctxt_switches:        272
nonvoluntary_ctxt_switches:     1
┌──[root@vms99.liruilongs.github.io]-[~]
└─$

voluntary_ctxt_switches: 272:表示当前进程自愿上下文切换的次数为 272 次。自愿上下文切换通常是由进程主动让出 CPU 时间片引起的,例如进程等待 I/O 操作完成或调用 sched_yield() 函数。

nonvoluntary_ctxt_switches: 1:表示当前进程非自愿上下文切换的次数为 1 次。非自愿上下文切换通常是由操作系统调度器强制进行的,例如当进程的时间片用完或高优先级进程抢占 CPU 时。

查询所有进程:

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$pidstat -w 5
Linux 5.15.0-112-generic (liruilongs.github.io)  2024年09月04日  _x86_64_ (4 CPU)

08时08分02秒   UID       PID   cswch/s nvcswch/s  Command
08时08分07秒     0        14     13.77      0.00  rcu_sched
08时08分07秒     0        15      0.20      0.00  migration/0
08时08分07秒     0        21      0.20      0.00  migration/1
08时08分07秒     0        27      0.20      0.00  migration/2
08时08分07秒     0        33      0.20      0.00  migration/3
08时08分07秒     0        43      2.00      0.00  kcompactd0
08时08分07秒     0        56      4.19      0.00  kworker/2:1-events
08时08分07秒     0       111      2.99      0.00  kworker/u8:2-writeback
08时08分07秒     0       120      0.40      0.00  kworker/3:1H-kblockd
08时08分07秒     0       133      5.99      0.00  kworker/1:2-events
08时08分07秒     0       191      0.60      0.00  kworker/1:1H-kblockd

这个工具需要注意,旧版本可能没有上下文相关的指标

  • cswch:表示每秒自愿上下文切换(voluntary context switches)的次数,
  • nvcswch:表示每秒非自愿上下文切换(non voluntary context switches)的次数

pidstat 默认显示进程的指标数据,加上 -t 参数后,才会输出线程的指标

实战

上下文频繁切换导致的CPU饱和分析

Sysbench是一个开源的、模块化的、跨平台的多线程性能测试工具,主要用于评估计算机系统在不同负载条件下的性能。

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$apt install sysbench -y

当前的 CPU 指标信息

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$vmstat 1 5
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b 交换 空闲 缓冲 缓存   si   so    bi    bo   in   cs us sy id wa st
 0  0      0 5195216  60404 1353744    0    0   140    43  620 4679  2  2 97  0  0
 0  0      0 5195216  60404 1353744    0    0     0     0  439  762  1  0 98  0  0
 0  0      0 5195216  60404 1353744    0    0     0    32  491  818  1  0 99  0  0
 0  0      0 5195216  60412 1353736    0    0     0    16  425  683  1  0 99  0  0
 0  0      0 5195216  60412 1353744    0    0     0     0  414  700  1  0 99  0  0
┌──[root@liruilongs.github.io]-[~] 
└─$

模拟系统多线程饱和调度

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$sysbench --threads=10 --max-time=300 threads run
WARNING: --max-time is deprecated, use --time instead
sysbench 1.0.20 (using system LuaJIT 2.1.0-beta3)

Running the test with following options:
Number of threads: 10
Initializing random number generator from current time


Initializing worker threads...

Threads started!

^C
┌──[root@liruilongs.github.io]-[~] 
└─$

通过 vmstat 来打印CPU 相关指标信息

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~] 
└─$vmstat 1 5
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b 交换 空闲 缓冲 缓存   si   so    bi    bo                in   cs     us sy id wa st
 9  0      0 5196448  60212 1353692    0    0   148    45  282     3355  1  1 98  0  0
 5  0      0 5196448  60212 1353732    0    0     0     0 77739 1342743 32 53 16  0  0
 9  0      0 5196448  60212 1353732    0    0     0     0 79785 1383450 28 56 16  0  0
 7  0      0 5196448  60212 1353732    0    0     0     0 79945 1411280 27 57 16  0  0
 7  0      0 5196224  60220 1353724    0    0     0    20 81862 1377316 29 55 16  0  0
┌──[root@liruilongs.github.io]-[~] 
└─$

可以看到 中断数(in)和上下文切换数(cs)大幅度增大,用户态和内核态 CPU 使用率同时增大,主要为内核态(sy),CPU 呈现饱和状态,空闲率(id)为 16%

同时系统就绪队列增加,有进程在等待CPU时间,但数量不是特别高,如果上面的指标长时间保持,可能需要排查是什么问题导致。

可以通过 pistat 来定位进程或在线程。通过 /proc/interrupts 分析中断类型

代码语言:javascript复制
# -d 参数表示高亮显示变化的区域
$ watch -d cat /proc/interrupts
           CPU0       CPU1
...
RES:    2450431    5279697   Rescheduling interrupts
...

每秒多少上下文切换才算正常?

当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,可能会出现性能问题。实际情况中,可能还需要根据 自愿切换和非自愿切换来分情况讨论:

  • 自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题;
  • 非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈;
  • 中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。

配置CPU亲和性优化上下文

CPU 配置亲和性,限制特定进程仅在特定的CPU或内核上运行(也称为CPU绑定或CPU亲和性),可以减少上下文切换

当进程被限制在特定的CPU上运行时,操作系统会减少将其从一个CPU迁移到另一个CPU的可能性,从而减少了上下文切换的开销。上下文切换涉及保存和恢复进程的CPU状态,是一个相对昂贵的操作。

缓存局部性:如果进程频繁访问内存中的某些区域,将其绑定到某个CPU可以确保这些区域的数据和指令更可能驻留在该CPU的缓存中,从而提高了缓存命中率,降低了访问延迟

taskset

taskset 是一个在 Linux 系统中用于设置或检索进程 CPU 亲和性(affinity)的命令行工具。通过 taskset,你可以控制进程应该在哪些 CPU 核心或哪些 CPU 集合上运行。这对于性能调优和故障隔离特别有用。

更改已运行进程的 CPU 亲和性

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$taskset -pc 0 3960506
pid 3960506's current affinity list: 0,1
pid 3960506's new affinity list: 0
┌──[root@liruilongs.github.io]-[~]
└─$

通过 /prod/{PID}/status 查看 CPU 亲和性

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$egrep Cpu /proc/3960506/status
Cpus_allowed:   1
Cpus_allowed_list:      0
通过 systemd 的 service unit 文件配置

systemd 提供了简单的方法可用实现 CPU 资源的亲和性限制。通过在服务的 unit 文件中[Service]块中,添加CPUAffinity=""即可。

代码语言:javascript复制
[Service]
CPUAffinity=1-3
  • CPUAffinity=0-3:允许进程在 CPU 核心 0、1、2 和 3 上运行。
  • CPUAffinity=0,2,3:允许进程在 CPU 核心 0、2 和 3 上运行,但不允许在核心 1 上运行

如果一个 unit 文件中有多行 CPUAffinity= 指令,systemd 确实会合并这些设置,但合并的方式是逻辑 OR,而不是逻辑 AND。这意味着只要在任何一行 CPUAffinity= 中列出的 CPU 核心,进程都有权限运行。

也可以使用 命令行的方式

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$systemctl set-property <service name> CPUAffinity=<value>
使用 cgroupcpuset 进行 CPU 亲和性限制

这里需要注意 cgroup 版本不同,对应的限制方式也不同,在 v2 版本中不直接支持 cpuset 控制器。cpuset 控制器是 cgroup v1 中的一个功能,它允许管理员为 cgroup 中的进程分配特定的 CPU 核心和内存节点,在 cgroup v2 中,cpuset 功能被整合到了统一的资源管理中,并且不再提供单独的 cpuset 控制器。

Cgroup V1

创建一个 cgroup

代码语言:javascript复制
┌──[root@vms99.liruilongs.github.io]-[~]
└─$mkdir -p /sys/fs/cgroup/cpuset/cpuset0

配置 cpuset,这里配置 CPU 允许在 0,1 对应的 CPU 上运行

代码语言:javascript复制
┌──[root@vms99.liruilongs.github.io]-[~]
└─$echo 0-1 > /sys/fs/cgroup/cpuset/cpuset0/cpuset.cpus
┌──[root@vms99.liruilongs.github.io]-[~]
└─$cat /sys/fs/cgroup/cpuset/cpuset0/cpuset.cpus
0-1

将进程添加到 cgroup, 这里是 tasks 文件,和 Cgroup v2 版本不同

代码语言:javascript复制
┌──[root@vms99.liruilongs.github.io]-[~]
└─$echo 40604 > /sys/fs/cgroup/cpuset/cpuset0/tasks
┌──[root@vms99.liruilongs.github.io]-[~]
└─$cat /sys/fs/cgroup/cpuset/cpuset0/tasks
40604

验证配置

代码语言:javascript复制
┌──[root@vms99.liruilongs.github.io]-[~]
└─$cat /proc/40604/status | grep Cpu
Cpus_allowed:   00000000,00000000,00000000,00000003
Cpus_allowed_list:      0-1
代码语言:javascript复制
┌──[root@vms99.liruilongs.github.io]-[~]
└─$printf "2xn" $((2**0 2**1))
00000000000000000000000000000003
Cgroup V2

cgroup v2 中控制应用程序的 CPU 亲和性,需要启用特定的 CPU 控制器,并创建一个专用的控制组。建议在 /sys/fs/cgroup/ 根控制组群中至少创建两级子控制组

验证 /sys/fs/cgroup/cgroup.controllers 文件中是否提供了 cpucpuset 控制器:

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

/sys/fs/cgroup/ 根控制组的直接子组启用了 cpucpuset 控制器。子组 是可以指定进程的 Cgroup 层级,并根据标准对每个进程应用控制检查的地方,用户可以在任意级别读取 cgroup.subtree_control 文件的内容,以了解子组中哪些控制器可用于启用。默认情况下,根控制组中的 /sys/fs/cgroup/cgroup.subtree_control 文件包含 memorypids 控制器。

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$cat /sys/fs/cgroup/cgroup.subtree_control
memory pids
┌──[root@liruilongs.github.io]-[~]
└─$echo " cpu" >> /sys/fs/cgroup/cgroup.subtree_control
┌──[root@liruilongs.github.io]-[~]
└─$echo " cpuset" >> /sys/fs/cgroup/cgroup.subtree_control
┌──[root@liruilongs.github.io]-[~]
└─$cat /sys/fs/cgroup/cgroup.subtree_control
cpuset cpu memory pids
┌──[root@liruilongs.github.io]-[~]
└─$

创建 /sys/fs/cgroup/Example/ 目录,/sys/fs/cgroup/Example/ 目录定义了一个子组。此外,上一步为这个子组启用了 cpucpuset 控制器。

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$mkdir /sys/fs/cgroup/Example/
┌──[root@liruilongs.github.io]-[~]
└─$cat /sys/fs/cgroup/Example/cgroup.controllers
cpuset cpu memory pids

创建 /sys/fs/cgroup/Example/ 目录时,一些 cgroups-v2 接口文件以及 cpucpuset 特定于控制器的文件也会在目录中自动创建。/sys/fs/cgroup/Example/目录还包含 memorypids 控制器的特定于控制器的文件

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$ls /sys/fs/cgroup/Example/
cgroup.controllers      cpuset.cpus.exclusive            memory.oom.group
cgroup.events           cpuset.cpus.exclusive.effective  memory.peak
cgroup.freeze           cpuset.cpus.partition            memory.reclaim
cgroup.kill             cpuset.mems                      memory.stat
cgroup.max.depth        cpuset.mems.effective            memory.swap.current
cgroup.max.descendants  cpu.stat                         memory.swap.events
cgroup.procs            cpu.weight                       memory.swap.high
cgroup.stat             cpu.weight.nice                  memory.swap.max
cgroup.subtree_control  memory.current                   memory.swap.peak
cgroup.threads          memory.events                    memory.zswap.current
cgroup.type             memory.events.local              memory.zswap.max
cpu.idle                memory.high                      pids.current
cpu.max                 memory.low                       pids.events
cpu.max.burst           memory.max                       pids.max
cpuset.cpus             memory.min                       pids.peak
cpuset.cpus.effective   memory.numa_stat
┌──[root@liruilongs.github.io]-[~]
└─$

启用 /sys/fs/cgroup/Example/ 中与 CPU 相关的控制器,以获取仅与 CPU 相关的控制器:

代码语言:javascript复制
──[root@liruilongs.github.io]-[~]
└─$echo " cpu" >> /sys/fs/cgroup/Example/cgroup.subtree_control
┌──[root@liruilongs.github.io]-[~]
└─$echo " cpuset" >> /sys/fs/cgroup/Example/cgroup.subtree_control

创建 /sys/fs/cgroup/Example/tasks/ 目录,/sys/fs/cgroup/Example/tasks/ 目录定义了一个子组,以及只与 cpucpuset 控制器相关的文件。

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$mkdir /sys/fs/cgroup/Example/tasks/
┌──[root@liruilongs.github.io]-[~]
└─$cat /sys/fs/cgroup/Example/tasks/cgroup.controllers
cpuset cpu
┌──[root@liruilongs.github.io]-[~]
└─$

配置 CPU 亲和性

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$echo "1" > /sys/fs/cgroup/Example/tasks/cpuset.cpus
┌──[root@liruilongs.github.io]-[~]
└─$

通过 httpd 的服务测试

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$systemctl enable --now httpd
┌──[root@liruilongs.github.io]-[~]
└─$pgrep httpd
879
1096
1098
1105
1106
11313
┌──[root@liruilongs.github.io]-[~]
└─$cat /proc/1105/status | grep Cpu
Cpus_allowed:   3
Cpus_allowed_list:      0-1

将服务的 PID 添加到 Example/tasks 子组中:

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$echo "1105" > /sys/fs/cgroup/Example/tasks/cgroup.procs

验证配置

代码语言:javascript复制
┌──[root@liruilongs.github.io]-[~]
└─$cat /proc/1105/status | grep Cpu
Cpus_allowed:   2
Cpus_allowed_list:      1
┌──[root@liruilongs.github.io]-[~]
└─$
┌──[root@vms99.liruilongs.github.io]-[~]
└─$printf "2xn" $((2**1))
00000000000000000000000000000002

关于 CPU 上下文就可小伙伴们分享到这里 ^_^

博文部分内容参考

© 文中涉及参考链接内容版权归原作者所有,如有侵权请告知 :)


《BPF Performance Tools》读书笔记

《Linux性能优化》中文版

极客时间 《Linux 性能优化实战》 课程笔记


© 2018-2024 liruilonger@gmail.com, 保持署名-非商用-相同方式共享(CC BY-NC-SA 4.0)

0 人点赞