百度指数抓取,再用图像识别得到指数
前言:
土福曾说,百度指数很难抓,在淘宝上面是20块1个关键字:
哥那么叼的人怎么会被他吓到,于是乎花了零零碎碎加起来大约2天半搞定,在此鄙视一下土福
安装的库很多:
谷歌图像识别tesseract-ocr
pip3 install pillow
pip3 install pyocr
selenium2.45
Chrome47.0.2526.106 m or Firebox32.0.1
chromedriver.exe
图像识别验证码请参考我的博客:
python图像识别--验证码
selenium用法请参考我的博客:
python之selenium
进入百度指数需要登陆,登陆的账号密码写在文本account里面:
万能登陆代码如下:
代码语言:javascript复制# 打开浏览器
def openbrowser():
global browser
# https://passport.baidu.com/v2/?login
url = "https://passport.baidu.com/v2/?login&tpl=mn&u=http://www.baidu.com/"
# 打开谷歌浏览器
# Firefox()
# Chrome()
browser = webdriver.Chrome()
# 输入网址
browser.get(url)
# 打开浏览器时间
# print("等待10秒打开浏览器...")
# time.sleep(10)
# 找到id="TANGRAM__PSP_3__userName"的对话框
# 清空输入框
browser.find_element_by_id("TANGRAM__PSP_3__userName").clear()
browser.find_element_by_id("TANGRAM__PSP_3__password").clear()
# 输入账号密码
# 输入账号密码
account = []
try:
fileaccount = open("../baidu/account.txt")
accounts = fileaccount.readlines()
for acc in accounts:
account.append(acc.strip())
fileaccount.close()
except Exception as err:
print(err)
input("请正确在account.txt里面写入账号密码")
exit()
browser.find_element_by_id("TANGRAM__PSP_3__userName").send_keys(account[0])
browser.find_element_by_id("TANGRAM__PSP_3__password").send_keys(account[1])
# 点击登陆登陆
# id="TANGRAM__PSP_3__submit"
browser.find_element_by_id("TANGRAM__PSP_3__submit").click()
# 等待登陆10秒
# print('等待登陆10秒...')
# time.sleep(10)
print("等待网址加载完毕...")
select = input("请观察浏览器网站是否已经登陆(y/n):")
while 1:
if select == "y" or select == "Y":
print("登陆成功!")
print("准备打开新的窗口...")
# time.sleep(1)
# browser.quit()
break
elif select == "n" or select == "N":
selectno = input("账号密码错误请按0,验证码出现请按1...")
# 账号密码错误则重新输入
if selectno == "0":
# 找到id="TANGRAM__PSP_3__userName"的对话框
# 清空输入框
browser.find_element_by_id("TANGRAM__PSP_3__userName").clear()
browser.find_element_by_id("TANGRAM__PSP_3__password").clear()
# 输入账号密码
account = []
try:
fileaccount = open("../baidu/account.txt")
accounts = fileaccount.readlines()
for acc in accounts:
account.append(acc.strip())
fileaccount.close()
except Exception as err:
print(err)
input("请正确在account.txt里面写入账号密码")
exit()
browser.find_element_by_id("TANGRAM__PSP_3__userName").send_keys(account[0])
browser.find_element_by_id("TANGRAM__PSP_3__password").send_keys(account[1])
# 点击登陆sign in
# id="TANGRAM__PSP_3__submit"
browser.find_element_by_id("TANGRAM__PSP_3__submit").click()
elif selectno == "1":
# 验证码的id为id="ap_captcha_guess"的对话框
input("请在浏览器中输入验证码并登陆...")
select = input("请观察浏览器网站是否已经登陆(y/n):")
else:
print("请输入“y”或者“n”!")
select = input("请观察浏览器网站是否已经登陆(y/n):")
登陆的页面:
登陆过后需要打开新的窗口,也就是打开百度指数,并且切换窗口,在selenium用:
代码语言:javascript复制# 新开一个窗口,通过执行js来新开一个窗口
js = 'window.open("http://index.baidu.com");'
browser.execute_script(js)
# 新窗口句柄切换,进入百度指数
# 获得当前打开所有窗口的句柄handles
# handles为一个数组
handles = browser.window_handles
# print(handles)
# 切换到当前最新打开的窗口
browser.switch_to_window(handles[-1])
清空输入框,构造点击天数:
代码语言:javascript复制# 清空输入框
browser.find_element_by_id("schword").clear()
# 写入需要搜索的百度指数
browser.find_element_by_id("schword").send_keys(keyword)
# 点击搜索
# <input type="submit" value="" id="searchWords" onclick="searchDemoWords()">
browser.find_element_by_id("searchWords").click()
time.sleep(2)
# 最大化窗口
browser.maximize_window()
# 构造天数
sel = int(input("查询7天请按0,30天请按1,90天请按2,半年请按3:"))
day = 0
if sel == 0:
day = 7
elif sel == 1:
day = 30
elif sel == 2:
day = 90
elif sel == 3:
day = 180
sel = '//a[@rel="' str(day) '"]'
browser.find_element_by_xpath(sel).click()
# 太快了
time.sleep(2)
天数也就是这里:
找到图形框:
代码语言:javascript复制xoyelement = browser.find_elements_by_css_selector("#trend rect")[2]
图形框就是:
根据坐标点的不同构造偏移量:
选取7天的坐标来观察:
第一个点的横坐标为1031.66666
第二个点的横坐标为1234
所以7天两个坐标之间的差为:202.33,其他的天数类似
用selenium库来模拟鼠标滑动悬浮:
代码语言:javascript复制from selenium.webdriver.common.action_chains import ActionChains
ActionChains(browser).move_to_element_with_offset(xoyelement,x_0,y_0).perform()
但是这样子确定的点指出是在这个位置:
也就是矩形的左上角,这里是不会加载js显示弹出框的,所以要给横坐标 1:
代码语言:javascript复制x_0 = 1
y_0 = 0
写个按照天数的循环,让横坐标累加:
代码语言:javascript复制# 按照选择的天数循环
for i in range(day):
# 构造规则
if day == 7:
x_0 = x_0 202.33
elif day == 30:
x_0 = x_0 41.68
elif day == 90:
x_0 = x_0 13.64
elif day == 180:
x_0 = x_0 6.78
鼠标横移时会弹出框,在网址里面找到这个框:
selenium自动识别之...:
代码语言:javascript复制# <div class="imgtxt" style="margin-left:-117px;"></div>
imgelement = browser.find_element_by_xpath('//div[@id="viewbox"]')
并且确定这个框的大小位置:
代码语言:javascript复制# 找到图片坐标
locations = imgelement.location
print(locations)
# 找到图片大小
sizes = imgelement.size
print(sizes)
# 构造指数的位置
rangle = (int(locations['x']), int(locations['y']), int(locations['x'] sizes['width']),
int(locations['y'] sizes['height']))
截取的图形为:
下面的思路就是:
- 将整个屏幕截图下来
- 打开截图用上面得到的这个坐标rangle进行裁剪
但是最后裁剪出来的是上面的那个黑框,我想要的效果是:
本次更新加入了对于关键词长度的判断,能够自动识别关键词长度而进行截取:
代码语言:javascript复制add_length = (len(keyword) - 2) * sizes['width'] / 15
找到位置:
代码语言:javascript复制# 构造指数的位置
rangle = (
int(locations['x'] sizes['width'] / 4 add_length), int(locations['y'] sizes['height'] / 2 - 40),
int(locations['x'] sizes['width'] * 2 / 3), int(locations['y'] sizes['height'] - 40))
后面的完整代码是:
代码语言:javascript复制# <div class="imgtxt" style="margin-left:-117px;"></div>
imgelement = browser.find_element_by_xpath('//div[@id="viewbox"]')
# 找到图片坐标
locations = imgelement.location
print(locations)
# 找到图片大小
sizes = imgelement.size
print(sizes)
# 构造关键词长度
add_length = (len(keyword) - 2) * sizes['width'] / 15
# 构造指数的位置
rangle = (
int(locations['x'] sizes['width'] / 4 add_length), int(locations['y'] sizes['height'] / 2 - 40),
int(locations['x'] sizes['width'] * 2 / 3), int(locations['y'] sizes['height'] - 40))
# 截取当前浏览器
path = "../baidu/" str(num)
browser.save_screenshot(str(path) ".png")
# 打开截图切割
img = Image.open(str(path) ".png")
jpg = img.crop(rangle)
jpg.save(str(path) ".jpg")
但是后面发现裁剪的图片太小,识别精度太低,所以需要对图片进行扩大:
代码语言:javascript复制# 将图片放大一倍
# 原图大小73.29
jpgzoom = Image.open(str(path) ".jpg")
(x, y) = jpgzoom.size
x_s = 146
y_s = 58
out = jpgzoom.resize((x_s, y_s), Image.ANTIALIAS)
out.save(path 'zoom.jpg', 'png', quality=95)
原图大小请 右键->属性->详细信息 查看,我的是长73像素,宽29像素
最后就是图像识别
代码语言:javascript复制# 图像识别
index = []
image = Image.open(str(path) "zoom.jpg")
code = pytesseract.image_to_string(image)
if code:
index.append(code)
最后效果图:
代码在我的github上面:
TTyb