文章目录
- 揭开 LVS 神秘的面纱
- 一 前言
- 二 认识 LVS
- 三 了解三种模式
- 3.1 Virtual Server via Network Address Translation(VS/NAT)
- 3.2 Virtual Server via IP Tunneling(VS/TUN)
- 3.3 Virtual Server via Direct Routing(VS/DR)
- 四 每种模式的优缺点
- 4.1 NAT 模式
- 4.2 TUN 模式
- 4.3 DR 模式
- 五 八种负载调度算法
- 六 总结
- 七 参考资料
揭开 LVS 神秘的面纱
一 前言
作为一名具备多年经验的老运维,LVS 的名声可谓如雷贯耳,一直都在寻找一个机会系统化地收集整理相关资料。时至今日,终于有时间详细地学习和了解 LVS 相关的知识。
LVS 是linux virtual server的简写,意为:Linux虚拟服务器,这是一个由章文嵩博士在1998年5月发起的一个自由软件项目。Linux 2.4 以后的内核版本,已经集成了 LVS 的各个功能模块,我们可以直接使用LVS提供的各种功能。
二 认识 LVS
LVS集群的特点可以归结如下:
- 功能
有实现三种IP负载均衡技术和八种连接调度算法的IPVS软件。在IPVS内部实现上,采用了高效的Hash函数和垃圾回收机制,能正确处理所调度报文相关的ICMP消息(有些商品化的系统反而不能)。虚拟服务的设置数目没有限制,每个虚拟服务有自己的服务器集。它支持持久的虚拟服务(如HTTP Cookie和HTTPS等需要该功能的支持),并提供详尽的统计数据,如连接的处理速率和报文的流量等。针对大规模拒绝服务(Deny of Service)攻击,实现了三种防卫策略。
有基于内容请求分发的应用层交换软件KTCPVS,它也是在Linux内核中实现。有相关的集群管理软件对资源进行监测,能及时将故障屏蔽,实现系统的高可用性。主、从调度器能周期性地进行状态同步,从而实现更高的可用性。
- 适用性
后端服务器可运行任何支持TCP/IP的操作系统,包括 Linux,各种 Unix(如FreeBSD、Sun Solaris、HP Unix等),Mac/OS 和 Windows NT/2000等。
负载调度器能够支持绝大多数的 TCP 和 UDP 协议:
协议 | 内容 |
---|---|
TCP | HTTP,FTP,PROXY,SMTP,POP3,IMAP4,DNS,LDAP,HTTPS,SSMTP等 |
UDP | DNS,NTP,ICP,视频、音频流播放协议等 |
无需对客户机和服务器作任何修改,可适用大多数 Internet 服务。
- 性能
LVS服务器集群系统具有良好的伸缩性,可支持几百万个并发连接。配置100M网卡,采用 VS/TUN 或 VS/DR 调度技术,集群系统的吞吐量可高达1Gbits/s;如配置千兆网卡,则系统的最大吞吐量可接近10Gbits/s。
- 可靠性
LVS 服务器集群软件已经在很多大型的、关键性的站点得到很好的应用,所以它的可靠性在真实应用得到很好的证实。有很多调度器运行一年多,未作一次重启动。
- 软件许可证
LVS集群软件是按 GPL(GNU Public License)许可证发行的自由软件,这意味着你可以得到软件的源代码,有权对其进行修改,但必须保证你的修改也是以 GPL 方式发行。
根据 LVS 工作模式的不同,LVS 工作模式分为三种:NAT 模式、TUN 模式、DR模式。
三 了解三种模式
3.1 Virtual Server via Network Address Translation(VS/NAT)
通过网络地址转换,调度器重写请求报文的目标地址,根据预设的调度算法,将请求分派给后端的真实服务器;真实服务器的响应报文通过调度器时,报文的源地址被重写,再返回给客户,完成整个负载调度过程。架构参考下图:
3.2 Virtual Server via IP Tunneling(VS/TUN)
采用NAT技术时,由于请求和响应报文都必须经过调度器地址重写,当客户请求越来越多时,调度器的处理能力将成为瓶颈。为了解决这个问题,调度器把请求报文通过IP隧道转发至真实服务器,而真实服务器将响应直接返回给客户,所以调度器只处理请求报文。由于一般网络服务应答比请求报文大许多,采用 VS/TUN技术后,集群系统的最大吞吐量可以提高10倍。架构参考下图:
3.3 Virtual Server via Direct Routing(VS/DR)
VS/DR通过改写请求报文的 MAC 地址,将请求发送到真实服务器,而真实服务器将响应直接返回给客户。同VS/TUN技术一样,VS/DR技术可极大地 提高集群系统的伸缩性。这种方法没有IP隧道的开销,对集群中的真实服务器也没有必须支持IP隧道协议的要求,但是要求调度器与真实服务器都有一块网卡连在同一物理网段上。架构参考下图:
四 每种模式的优缺点
4.1 NAT 模式
优点:
- 服务器可以运行任何支持TCP/IP的操作系统,它只需要一个IP地址配置在调度器上,服务器组可以用私有的IP地址。
- 采用内部 IP,服务节点隐蔽,安全性较好。
- 原理、配置简单,容易理解。
缺点:
- 伸缩能力有限, 当服务器结点数目升到20时,调度器本身有可能成为系统的新瓶颈,因为在NAT中请求和响应报文都需要通过负载调度器。
4.2 TUN 模式
优点:
- 可以调度百台以上的服务器(同等规模的服务器),而它不会成为系统的瓶颈。可以用来构建高性能的超级服务器。
- 原理、配置简单,容易理解。
缺点:
- TUN技术对服务器有要求,即所有的服务器必须支持“IP Tunneling”或者“IP Encapsulation”协议。
- 节点暴露,安全性不如 NAT 模式。
4.3 DR 模式
优点:
- 可以调度百台以上的服务器(同等规模的服务器),而它不会成为系统的瓶颈。可以用来构建高性能的超级服务器。
- 跟 TUN 模式相比,这种方法没有IP隧道的开销。
缺点:
- 要求负载调度器与实际服务器都有一块网卡连在同一物理网段上,服务器网络设备(或者设备别名)不作ARP响应,或者能将报文重定向(Redirect)到本地的Socket端口上。
- 节点暴露,安全性不如 NAT 模式。
整合一下,得到下表:
模式 | 优点 | 缺点 |
---|---|---|
NAT | 服务器可以运行任何支持TCP/IP的操作系统。采用内部 IP,服务节点隐蔽,安全性较好。原理、配置简单,容易理解。 | 伸缩能力有限。当服务器结点数目升到20时,调度器本身有可能成为系统的新瓶颈,因为在NAT中请求和响应报文都需要通过负载调度器。 |
TUN | 可以调度百台以上的服务器(同等规模的服务器),而它不会成为系统的瓶颈。可以用来构建高性能的超级服务器。原理、配置简单,容易理解。 | TUN技术对服务器有要求,即所有的服务器必须支持“IP Tunneling”或者“IP Encapsulation”协议。节点暴露,安全性不如 NAT 模式。 |
DR | 可以调度百台以上的服务器(同等规模的服务器),而它不会成为系统的瓶颈。可以用来构建高性能的超级服务器。跟 TUN 模式相比,这种方法没有IP隧道的开销。 | 要求负载调度器与实际服务器都有一块网卡连在同一物理网段上,服务器网络设备(或者设备别名)不作ARP响应,或者能将报文重定向(Redirect)到本地的Socket端口上。节点暴露,安全性不如 NAT 模式。 |
- 服务器可以运行任何支持TCP/IP的操作系统。
- 采用内部 IP,服务节点隐蔽,安全性较好。
- 原理、配置简单,容易理解。
- 伸缩能力有限。当服务器结点数目升到20时,调度器本身有可能成为系统的新瓶颈,因为在NAT中请求和响应报文都需要通过负载调度器。
TUN
- 可以调度百台以上的服务器(同等规模的服务器),而它不会成为系统的瓶颈。可以用来构建高性能的超级服务器。
- 原理、配置简单,容易理解。
- TUN技术对服务器有要求,即所有的服务器必须支持“IP Tunneling”或者“IP Encapsulation”协议。
- 节点暴露,安全性不如 NAT 模式。
DR
- 可以调度百台以上的服务器(同等规模的服务器),而它不会成为系统的瓶颈。可以用来构建高性能的超级服务器。
- 跟 TUN 模式相比,这种方法没有IP隧道的开销。
- 要求负载调度器与实际服务器都有一块网卡连在同一物理网段上,服务器网络设备(或者设备别名)不作ARP响应,或者能将报文重定向(Redirect)到本地的Socket端口上。
- 节点暴露,安全性不如 NAT 模式。
五 八种负载调度算法
针对不同的网络服务需求和服务器配置,IPVS调度器实现了如下八种负载调度算法:
- 轮询(Round Robin)
调度器通过"轮询"调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。
- 加权轮询(Weighted Round Robin)
调度器通过"加权轮询"调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
- 最少链接(Least Connections)
调度器通过"最少连接"调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用"最小连接"调度算法可以较好地均衡负载。
- 加权最少链接(Weighted Least Connections)
在集群系统中的服务器性能差异较大的情况下,调度器采用"加权最少链接"调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
- 基于局部性的最少链接(Locality-Based Least Connections)
“基于局部性的最少链接” 调度算法是针对目标IP地址的负载均衡,目前主要用于 Cache 集群系统。该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用"最少链接"的原则选出一个可用的服务器,将请求发送到该服务器。
- 带复制的基于局部性最少链接(Locality-Based Least Connections with Replication)
"带复制的基于局部性最少链接"调度算法也是针对目标IP地址的负载均衡,目前主要用于 Cache 集群系统。它与 LBLC 算法的不同之处是它要维护从一个 目标 IP 地址到一组服务器的映射,而 LBLC 算法维护从一个目标 IP 地址到一台服务器的映射。该算法根据请求的目标 IP 地址找出该目标 IP 地址对应的服务器组,按"最小连接"原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器,若服务器超载;则按"最小连接"原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。
- 目标地址散列(Destination Hashing)
"目标地址散列"调度算法根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
- 源地址散列(Source Hashing)
"源地址散列"调度算法根据请求的源 IP 地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
六 总结
本文大量引用了章博士原文,并在此基础之上作了一些延申与总结,旨在学习、交流,也为将来自己查阅资料时节约时间。由于时间仓促,难免疏漏,望诸位多多指教。