爬虫系列(11)Scrapy 数据的提取和保存以及Pipeline的介绍。

2019-07-10 10:11:57 浏览数 (1)

1.Scrapy提取项目

从网页中提取数据,Scrapy 使用基于 XPath 和 CSS 表达式的技术叫做选择器。以下是 XPath 表达式的一些例子:

  • 这将选择 HTML 文档中的 <head> 元素中的 <title> 元素
代码语言:javascript复制
/html/head/title
  • 这将选择 <title> 元素中的文本
代码语言:javascript复制
/html/head/title/text()
  • 这将选择所有的 <td> 元素
代码语言:javascript复制
//td
  • 选择 div 包含一个属性 class=”slice” 的所有元素
代码语言:javascript复制
//div[@class=”slice”]

选择器有四个基本的方法,如下所示:

S.N.

方法 & 描述

extract()

它返回一个unicode字符串以及所选数据

extract_first()

它返回第一个unicode字符串以及所选数据

re()

它返回Unicode字符串列表,当正则表达式被赋予作为参数时提取

xpath()

它返回选择器列表,它代表由指定XPath表达式参数选择的节点

css()

它返回选择器列表,它代表由指定CSS表达式作为参数所选择的节点

2.Scrapy Shell

如果使用选择器想快速的到到效果,我们可以使用Scrapy Shell

代码语言:javascript复制
scrapy shell "http://www.163.com"

注意windows系统必须使用双引号

2.1 举例

从一个普通的HTML网站提取数据,查看该网站得到的 XPath 的源代码。检测后,可以看到数据将在UL标签,并选择 li 标签中的 元素。

代码的下面行显示了不同类型的数据的提取:

  • 选择 li 标签内的数据:
代码语言:javascript复制
response.xpath('//ul/li')
  • 对于选择描述:
代码语言:javascript复制
response.xpath('//ul/li/text()').extract()
  • 对于选择网站标题:
代码语言:javascript复制
response.xpath('//ul/li/a/text()').extract()
代码语言:javascript复制
#对于选择网站的链接
response.xpath('//ul/li/a/@href').extract()

3. 数据的提取

3.1 控制台打印
代码语言:javascript复制
import scrapy


class DoubanSpider(scrapy.Spider):
    name = 'douban'
    allwed_url = 'douban.com'
    start_urls = [
        'https://movie.douban.com/top250/'
    ]

    def parse(self, response):
        movie_name = response.xpath("//div[@class='item']//a/span[1]/text()").extract()
        movie_core = response.xpath("//div[@class='star']/span[2]/text()").extract()
        yield {
            'movie_name':movie_name,
            'movie_core':movie_core
        }

执行以上代码,我可以在控制看到:

代码语言:javascript复制
2018-01-24 15:17:14 [scrapy.utils.log] INFO: Scrapy 1.5.0 started (bot: spiderdemo1)
2018-01-24 15:17:14 [scrapy.utils.log] INFO: Versions: lxml 4.1.1.0, libxml2 2.9.5, cssselect 1.0.3, parsel 1.3.1, w3lib 1.18.0, Twiste
d 17.9.0, Python 3.6.3 (v3.6.3:2c5fed8, Oct  3 2017, 18:11:49) [MSC v.1900 64 bit (AMD64)], pyOpenSSL 17.5.0 (OpenSSL 1.1.0g  2 Nov 201
7), cryptography 2.1.4, Platform Windows-10-10.0.10240-SP0
2018-01-24 15:17:14 [scrapy.crawler] INFO: Overridden settings: {'BOT_NAME': 'spiderdemo1', 'NEWSPIDER_MODULE': 'spiderdemo1.spiders',
'ROBOTSTXT_OBEY': True, 'SPIDER_MODULES': ['spiderdemo1.spiders']}
2018-01-24 15:17:14 [scrapy.middleware] INFO: Enabled extensions:
['scrapy.extensions.corestats.CoreStats',
 'scrapy.extensions.telnet.TelnetConsole',
 'scrapy.extensions.logstats.LogStats']
2018-01-24 15:17:14 [scrapy.middleware] INFO: Enabled downloader middlewares:
['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware',
 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware',
 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware',
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware',
 'scrapy.downloadermiddlewares.retry.RetryMiddleware',
 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware',
 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware',
 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware',
 'scrapy.downloadermiddlewares.stats.DownloaderStats']
2018-01-24 15:17:14 [scrapy.middleware] INFO: Enabled spider middlewares:
['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware',
 'scrapy.spidermiddlewares.referer.RefererMiddleware',
 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware',
 'scrapy.spidermiddlewares.depth.DepthMiddleware']
2018-01-24 15:17:14 [scrapy.middleware] INFO: Enabled item pipelines:
[]
2018-01-24 15:17:14 [scrapy.core.engine] INFO: Spider opened
2018-01-24 15:17:14 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2018-01-24 15:17:14 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.0.0.1:6023
2018-01-24 15:17:14 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://movie.douban.com/robots.txt> (referer: None)
2018-01-24 15:17:15 [scrapy.downloadermiddlewares.redirect] DEBUG: Redirecting (301) to <GET https://movie.douban.com/top250> from <GET
 https://movie.douban.com/top250/>
2018-01-24 15:17:15 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://movie.douban.com/top250> (referer: None)
2018-01-24 15:17:15 [scrapy.core.scraper] DEBUG: Scraped from <200 https://movie.douban.com/top250>
{'movie_name': ['肖申克的救赎', '霸王别姬', '这个杀手不太冷', '阿甘正传', '美丽人生', '千与千寻', '泰坦尼克号', '辛德勒的名单', '盗梦空
间', '机器人总动员', '海上钢琴师', '三傻大闹宝莱坞', '忠犬八公的故事', '放牛班的春天', '大话西游之大圣娶亲', '教父', '龙猫', '楚门的世
界', '乱世佳人', '熔炉', '触不可及', '天堂电影院', '当幸福来敲门', '无间道', '星际穿越'], 'movie_core': ['9.6', '9.5', '9.4', '9.4', '9
.5', '9.2', '9.2', '9.4', '9.3', '9.3', '9.2', '9.1', '9.2', '9.2', '9.2', '9.2', '9.1', '9.1', '9.2', '9.2', '9.1', '9.1', '8.9', '9.0
', '9.1']}
2018-01-24 15:17:15 [scrapy.core.engine] INFO: Closing spider (finished)
2018-01-24 15:17:15 [scrapy.statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 651,
 'downloader/request_count': 3,
 'downloader/request_method_count/GET': 3,
 'downloader/response_bytes': 13900,
 'downloader/response_count': 3,
 'downloader/response_status_count/200': 2,
 'downloader/response_status_count/301': 1,
 'finish_reason': 'finished',
 'finish_time': datetime.datetime(2018, 1, 24, 7, 17, 15, 247183),
 'item_scraped_count': 1,
 'log_count/DEBUG': 5,
 'log_count/INFO': 7,
 'response_received_count': 2,
 'scheduler/dequeued': 2,
 'scheduler/dequeued/memory': 2,
 'scheduler/enqueued': 2,
 'scheduler/enqueued/memory': 2,
 'start_time': datetime.datetime(2018, 1, 24, 7, 17, 14, 784782)}
2018-01-24 15:17:15 [scrapy.core.engine] INFO: Spider closed (finished)
3.2 以文件的方式输出
3.2.1 python原生方式
代码语言:javascript复制
with open("movie.txt", 'wb') as f:
    for n, c in zip(movie_name, movie_core):
        str = n ":" c "n"
        f.write(str.encode())
3.2.2 以scrapy内置方式

scrapy 内置主要有四种:JSON,JSON lines,CSV,XML

我们将结果用最常用的JSON导出,命令如下:

代码语言:javascript复制
scrapy crawl dmoz -o douban.json -t json 

-o 后面是导出文件名,-t 后面是导出类型

4.提取内容的封装Item

Scrapy进程可通过使用蜘蛛提取来自网页中的数据。Scrapy使用Item类生成输出对象用于收刮数据

Item 对象是自定义的python字典,可以使用标准字典语法获取某个属性的值

4.1 定义
代码语言:javascript复制
import scrapy

class InfoItem(scrapy.Item):
    # define the fields for your item here like:
    movie_name = scrapy.Field()
    movie_core = scrapy.Field()
4.2 使用
代码语言:javascript复制
def parse(self, response):
    movie_name = response.xpath("//div[@class='item']//a/span[1]/text()").extract()
    movie_core = response.xpath("//div[@class='star']/span[2]/text()").extract()
    
    for n, c in zip(movie_name, movie_core):
        movie = InfoItem()
        movie['movie_name'] = n
        movie['movie_core'] = c
        yield movie

5. Item Pipeline 介绍

当Item 在Spider中被收集之后,就会被传递到Item Pipeline中进行处理

每个item pipeline组件是实现了简单的方法的python类,负责接收到item并通过它执行一些行为,同时也决定此Item是否继续通过pipeline,或者被丢弃而不再进行处理

item pipeline的主要作用:

  1. 清理html数据
  2. 验证爬取的数据
  3. 去重并丢弃
  4. 讲爬取的结果保存到数据库中或文件中

6. 编写自己的item pipeline

6.1 必须实现的函数
  • process_item(self,item,spider)

每个item piple组件是一个独立的pyhton类,必须实现以process_item(self,item,spider)方法

每个item pipeline组件都需要调用该方法,这个方法必须返回一个具有数据的dict,或者item对象,或者抛出DropItem异常,被丢弃的item将不会被之后的pipeline组件所处理

6.2 可以选择实现
  • open_spider(self,spider)表示当spider被开启的时候调用这个方法
  • close_spider(self,spider)当spider关闭时候这个方法被调用
6.3 应用到项目
代码语言:javascript复制
import json

class MoviePipeline(object):
    def process_item(self, item, spider):
        json.dump(dict(item), open('diban.json', 'a', encoding='utf-8'), ensure_ascii=False)
        return item

注意:

写到pipeline后,要在settings中设置才可生效

代码语言:javascript复制
ITEM_PIPELINES = {
    'spiderdemo1.pipelines.MoviePipeline': 300
}

6.4 将项目写入MongoDB

MongoDB地址和数据库名称在Scrapy设置中指定; MongoDB集合以item类命名

代码语言:javascript复制
from pymongo import MongoClient
from middle.settings import HOST
from middle.settings import PORT
from middle.settings import DB_NAME
from middle.settings import SHEET_NAME


class MiddlePipeline(object):
    def __init__(self):
        client = MongoClient(host=HOST, port=PORT)
        my_db = client[DB_NAME]
        self.sheet = my_db[SHEET_NAME]

    def process_item(self, item, spider):
        self.sheet.insert(dict(item))
        return item

0 人点赞