Combine SAC with RNN (part1)

2019-07-10 11:02:45 浏览数 (2)

With the combination of sac and rnn. we can solve POMDP problem theoretically, but in practice, we face a lot problem.

One of the most important problem is what kind of structure should we use? There are batch of valid choice, for example we can use the full length episode to feed rnn, or we can use a fixed length.

With some investigate in this area, we choose a fixed length rnn. Another crutial problem is how to deal with different length of episodes. Me choice is discard any invalid sequence.

We will release more implement details, stay tuned.

代码语言:javascript复制
class ReplayBuffer:
    """
    A simple FIFO experience replay buffer for SAC agents.
    """

    def __init__(self, obs_dim, act_dim, size, h_size, seq_length, flag="single"):
        self.flag = flag
        self.sequence_length = seq_length
        self.ptr, self.size, self.max_size = 0, 0, size
        self.obs_dim = obs_dim
        size  = seq_length  # in case index is out of range
        self.obs1_buf = np.zeros([size, obs_dim], dtype=np.float32)
        self.hidden_buf = np.zeros([size, h_size], dtype=np.float32)
        self.acts_buf = np.zeros([size, act_dim], dtype=np.float32)
        self.rews_buf = np.zeros([size, 1], dtype=np.float32)
        self.done_buf = np.zeros([size, 1], dtype=np.float32)
        self.target_done_ratio = 0

    def store(self, obs, s_t_0, act, rew, done):
        self.obs1_buf[self.ptr] = obs
        self.hidden_buf[self.ptr] = s_t_0
        self.acts_buf[self.ptr] = act
        self.rews_buf[self.ptr] = rew
        self.done_buf[self.ptr] = done
        self.ptr = (self.ptr   1) % self.max_size  # 1 =1 2 =2 21 =1
        self.size = min(self.size   1, self.max_size)  # use self.size to control sample range
        self.target_done_ratio = np.sum(self.done_buf) / self.size

    def sample_batch(self, batch_size=32):
        """
        :param batch_size:
        :return: s a r s' d
        """

        idxs_c = np.empty([batch_size, self.sequence_length])  # N T 1

        for i in range(batch_size):
            end = False
            while not end:
                ind = np.random.randint(0, self.size - 5)  # random sample a starting point in current buffer
                idxs = np.arange(ind, ind   self.sequence_length)  # extend seq from starting point
                is_valid_pos = True if sum(self.done_buf[idxs]) == 0 else (self.sequence_length -
                                                                           np.where(self.done_buf[idxs] == 1)[0][
                                                                               0]) == 2

                end = True if is_valid_pos else False

            idxs_c[i] = idxs

        np.random.shuffle(idxs_c)
        idxs = idxs_c.astype(int)
        # print(self.target_done_ratio, np.sum(self.done_buf[idxs]) / batch_size)
        data = dict(obs1=self.obs1_buf[idxs],
                    s_t_0=self.hidden_buf[idxs][:, 0, :],  # slide N T H to N H
                    acts=self.acts_buf[idxs],
                    rews=self.rews_buf[idxs],
                    done=self.done_buf[idxs])
        return data

0 人点赞