如果有人问你数据库的原理,叫他看这篇文章-2

2019-08-13 09:59:31 浏览数 (1)

前言

原文地址:http://blog.jobbole.com/100349/

国内大佬翻译的文章,因为文章较长,不适合碎片化阅读,因此分为几篇文章来转载,满满的干货,外链在微信上不能显示

全局概览

我们已经了解了数据库内部的基本组件,现在我们需要回来看看数据库的全貌了。

数据库是一个易于访问和修改的信息集合。不过简单的一堆文件也能达到这个效果。事实上,像SQLite这样最简单的数据库也只是一堆文件而已,但SQLite是精心设计的一堆文件,因为它允许你:

  • 使用事务来确保数据的安全和一致性
  • 快速处理百万条以上的数据

数据库一般可以用如下图形来理解:

撰写这部分之前,我读过很多书/论文,它们都以自己的方式描述数据库。所以,我不会特别关注如何组织数据库或者如何命名各种进程,因为我选择了自己的方式来描述这些概念以适应本文。区别就是不同的组件,总体思路为:数据库是由多种互相交互的组件构成的

核心组件:

  • 进程管理器(process manager):很多数据库具备一个需要妥善管理的进程/线程池。再者,为了实现纳秒级操作,一些现代数据库使用自己的线程而不是操作系统线程。
  • 网络管理器(network manager):网路I/O是个大问题,尤其是对于分布式数据库。所以一些数据库具备自己的网络管理器。
  • 文件系统管理器(File system manager)磁盘I/O是数据库的首要瓶颈。具备一个文件系统管理器来完美地处理OS文件系统甚至取代OS文件系统,是非常重要的。
  • 内存管理器(memory manager):为了避免磁盘I/O带来的性能损失,需要大量的内存。但是如果你要处理大容量内存你需要高效的内存管理器,尤其是你有很多查询同时使用内存的时候。
  • 安全管理器(Security Manager):用于对用户的验证和授权。
  • 客户端管理器(Client manager):用于管理客户端连接。
  • ……

工具:

  • 备份管理器(Backup manager):用于保存和恢复数据。
  • 复原管理器(Recovery manager):用于崩溃后重启数据库到一个一致状态
  • 监控管理器(Monitor manager):用于记录数据库活动信息和提供监控数据库的工具。
  • Administration管理器(Administration manager):用于保存元数据(比如表的名称和结构),提供管理数据库、模式、表空间的工具 【译者注:好吧,我真的不知道Administration manager该翻译成什么,有知道的麻烦告知,不胜感激……】
  • ……

查询管理器:

  • 查询解析器(Query parser):用于检查查询是否合法
  • 查询重写器(Query rewriter):用于预优化查询
  • 查询优化器(Query optimizer):用于优化查询
  • 查询执行器(Query executor):用于编译和执行查询

数据管理器:

  • 事务管理器(Transaction manager):用于处理事务
  • 缓存管理器(Cache manager):数据被使用之前置于内存,或者数据写入磁盘之前置于内存
  • 数据访问管理器(Data access manager):访问磁盘中的数据

在本文剩余部分,我会集中探讨数据库如何通过如下进程管理SQL查询的:

  • 客户端管理器
  • 查询管理器
  • 数据管理器(含复原管理器)

客户端管理器

客户端管理器是处理客户端通信的。客户端可以是一个(网站)服务器或者一个最终用户或最终应用。客户端管理器通过一系列知名的API(JDBC, ODBC, OLE-DB …)提供不同的方式来访问数据库。

客户端管理器也提供专有的数据库访问API。

当你连接到数据库时:

  • 管理器首先检查你的验证信息(用户名和密码),然后检查你是否有访问数据库的授权。这些权限由DBA分配。
  • 然后,管理器检查是否有空闲进程(或线程)来处理你对查询。
  • 管理器还会检查数据库是否负载很重。
  • 管理器可能会等待一会儿来获取需要的资源。如果等待时间达到超时时间,它会关闭连接并给出一个可读的错误信息。
  • 然后管理器会把你的查询送给查询管理器来处理。
  • 因为查询处理进程不是『不全则无』的,一旦它从查询管理器得到数据,它会把部分结果保存到一个缓冲区并且开始给你发送
  • 如果遇到问题,管理器关闭连接,向你发送可读的解释信息,然后释放资源。

查询管理器

这部分是数据库的威力所在,在这部分里,一个写得糟糕的查询可以转换成一个快速执行的代码,代码执行的结果被送到客户端管理器。这个多步骤操作过程如下:

  • 查询首先被解析并判断是否合法
  • 然后被重写,去除了无用的操作并且加入预优化部分
  • 接着被优化以便提升性能,并被转换为可执行代码和数据访问计划。
  • 然后计划被编译
  • 最后,被执行

这里我不会过多探讨最后两步,因为它们不太重要。

查询解析器

每一条SQL语句都要送到解析器来检查语法,如果你的查询有错,解析器将拒绝该查询。比如,如果你写成”SLECT …” 而不是 “SELECT …”,那就没有下文了。

但这还不算完,解析器还会检查关键字是否使用正确的顺序,比如 WHERE 写在 SELECT 之前会被拒绝。

然后,解析器要分析查询中的表和字段,使用数据库元数据来检查

  • 表是否存在
  • 表的字段是否存在
  • 对某类型字段的 运算 是否 可能(比如,你不能将整数和字符串进行比较,你不能对一个整数使用 substring() 函数)

接着,解析器检查在查询中你是否有权限来读取(或写入)表。再强调一次:这些权限由DBA分配。

在解析过程中,SQL 查询被转换为内部表示(通常是一个树)。

如果一切正常,内部表示被送到查询重写器。

查询重写器

在这一步,我们已经有了查询的内部表示,重写器的目标是:

  • 预优化查询
  • 避免不必要的运算
  • 帮助优化器找到合理的最佳解决方案

重写器按照一系列已知的规则对查询执行检测。如果查询匹配一种模式的规则,查询就会按照这条规则来重写。下面是(可选)规则的非详尽的列表:

  • 视图合并:如果你在查询中使用视图,视图就会转换为它的 SQL 代码。
  • 子查询扁平化:子查询是很难优化的,因此重写器会尝试移除子查询

例如:

代码语言:javascript复制
SELECT PERSON.*
FROM PERSON
WHERE PERSON.person_key IN
(SELECT MAILS.person_key
FROM MAILS
WHERE MAILS.mail LIKE 'christophe%');

会转换为:

代码语言:javascript复制
SELECT PERSON.*
FROM PERSON, MAILS
WHERE PERSON.person_key = MAILS.person_key
and MAILS.mail LIKE 'christophe%';
  • 去除不必要的运算符:比如,如果你用了 DISTINCT,而其实你有 UNIQUE 约束(这本身就防止了数据出现重复),那么 DISTINCT 关键字就被去掉了。
  • 排除冗余的联接:如果相同的 JOIN 条件出现两次,比如隐藏在视图中的 JOIN 条件,或者由于传递性产生的无用 JOIN,都会被消除。
  • 常数计算赋值:如果你的查询需要计算,那么在重写过程中计算会执行一次。比如 WHERE AGE > 10 2 会转换为 WHERE AGE > 12 , TODATE(“日期字符串”) 会转换为 datetime 格式的日期值。
  • (高级)分区裁剪(Partition Pruning):如果你用了分区表,重写器能够找到需要使用的分区。
  • (高级)物化视图重写(Materialized view rewrite):如果你有个物化视图匹配查询谓词的一个子集,重写器将检查视图是否最新并修改查询,令查询使用物化视图而不是原始表。
  • (高级)自定义规则:如果你有自定义规则来修改查询(就像 Oracle policy),重写器就会执行这些规则。
  • (高级)OLAP转换:分析/加窗 函数,星形联接,ROLLUP 函数……都会发生转换(但我不确定这是由重写器还是优化器来完成,因为两个进程联系很紧,必须看是什么数据库)。

【译者注: 物化视图 。谓词,predicate,条件表达式的求值返回真或假的过程】

重写后的查询接着送到优化器,这时候好玩的就开始了。

统计

研究数据库如何优化查询之前我们需要谈谈统计,因为没有统计的数据库是愚蠢的。除非你明确指示,数据库是不会分析自己的数据的。没有分析会导致数据库做出(非常)糟糕的假设。

但是,数据库需要什么类型的信息呢?

我必须(简要地)谈谈数据库和操作系统如何保存数据。两者使用的最小单位叫做页或块(默认 4 或 8 KB)。这就是说如果你仅需要 1KB,也会占用一个页。要是页的大小为 8KB,你就浪费了 7KB。

回来继续讲统计! 当你要求数据库收集统计信息,数据库会计算下列值:

  • 表中行和页的数量
  • 表中每个列中的: 唯一值 数据长度(最小,最大,平均) 数据范围(最小,最大,平均)
  • 表的索引信息

这些统计信息会帮助优化器估计查询所需的磁盘 I/O、CPU、和内存使用

对每个列的统计非常重要。 比如,如果一个表 PERSON 需要联接 2 个列: LAST_NAME, FIRST_NAME。 根据统计信息,数据库知道FIRST_NAME只有 1,000 个不同的值,LAST_NAME 有 1,000,000 个不同的值。 因此,数据库就会按照 LAST_NAME, FIRST_NAME 联接。 因为 LAST_NAME 不大可能重复,多数情况下比较 LAST_NAME 的头 2 、 3 个字符就够了,这将大大减少比较的次数。

不过,这些只是基本的统计。你可以让数据库做一种高级统计,叫直方图。直方图是列值分布情况的统计信息。例如:

  • 出现最频繁的值
  • 分位数 【译者注:http://baike.baidu.com/view/1323572.htm】

这些额外的统计会帮助数据库找到更佳的查询计划,尤其是对于等式谓词(例如: WHERE AGE = 18 )或范围谓词(例如: WHERE AGE > 10 and AGE < 40),因为数据库可以更好的了解这些谓词相关的数字类型数据行(注:这个概念的技术名称叫选择率)。

统计信息保存在数据库元数据内,例如(非分区)表的统计信息位置:

  • Oracle: USER / ALL / DBA_TABLES 和 USER / ALL / DBA_TAB_COLUMNS
  • DB2: SYSCAT.TABLES 和 SYSCAT.COLUMNS

统计信息必须及时更新。如果一个表有 1,000,000 行而数据库认为它只有 500 行,没有比这更糟糕的了。统计唯一的不利之处是需要时间来计算,这就是为什么数据库大多默认情况下不会自动计算统计信息。数据达到百万级时统计会变得困难,这时候,你可以选择仅做基本统计或者在一个数据库样本上执行统计。

举个例子,我参与的一个项目需要处理每表上亿条数据的库,我选择只统计10%,结果造成了巨大的时间消耗。本例证明这是个糟糕的决定,因为有时候 Oracle 10G 从特定表的特定列中选出的 10% 跟全部 100% 有很大不同(对于拥有一亿行数据的表,这种情况极少发生)。这次错误的统计导致了一个本应 30 秒完成的查询最后执行了 8 个小时,查找这个现象根源的过程简直是个噩梦。这个例子显示了统计的重要性。

注:当然了,每个数据库还有其特定的更高级的统计。如果你想了解更多信息,读读数据库的文档。话虽然这么说,我已经尽力理解统计是如何使用的了,而且我找到的最好的官方文档来自PostgreSQL。

0 人点赞