引言:知识图谱本质上是语义网络的知识库。也可以简单地把知识图谱理解成多关系图 。知识图谱以半结构化的形式描述客观世界中概念、实体及其关系。它把复杂的知识领域通过数据挖掘、信息处理、知识计量和图形绘制而显示出来,揭示知识领域的动态发展规律,为各领域的研究提供切实的、有价值的参考。本文将重点介绍知识图谱技术与智慧金融的融合。
智慧金融的概念是在现代大数据和人工智能技术发展背景下催生的,具备自动化信息处理、智能化辅助决策和部分自决策相结合、智能化和自动化执行等特征的金融服务综合应用。
金融业作为现代经济的核心,一直是个各项前沿技术的积极参与者和受益者。依托这些技术提供、精炼的信息价值、数据价值,金融业经历了上世纪末的全面电子时代到本世纪兴起的互联网浪潮,实现了极大的跨越式发展,形成了互联网金融、金融科技等新的发展模式,并促成了金融各领域与科技各行业之间的合作,并深刻的促进了金融生态圈的生长和发展。
知识图谱在智慧金融里的应用
智慧金融作为一个有机整体,知识图谱在其中提供的知识提取、融合、分析、推断、决策等等功能都是必不可少的。在场景方面,就涵盖了智慧支付、智慧财富管理、智慧银行、智慧证券、智慧保险、智慧风控等诸多方面。在具体的应用功能上面,从KYC、舆情分析、个人/企业信用分析、风险传导、营销推荐、智能问答、知识库等等上面都是典型的知识图谱应用。
总体流程图
风险评估与反欺诈
如今数字金融欺诈形式不断更新、纷繁复杂,欺诈手段逐渐表现出专业化、产业化、隐蔽化、场景化的特征。
传统反欺诈技术的维度单一、效率低下、范围受限的劣势越来越明显。在反欺诈场景中,知识图谱可以聚合与借款人相关的各类数据源,包括借款人的基本信息、日常生活中的消费记录、行为记录、关系信息、网上浏览记录等,然后抽取该借款人的特征标签,从而将相关的信息整合成进结构化的知识图谱中,在此基础上,对该借款人的风险进行全方位的分析和评估。
除了申请阶段的反欺诈,通过构建已知欺诈要素如手机、设备、账号、地域等的关系图谱,全方位了解客户海量风险数据的离线统计分析,按主题要素收集风险运营的结果反馈,建立客户风险特征信息库,优化风险模型和规则,还能做到交易阶段的反欺诈。
风险预测
风险预测包括对潜在风险行业预测和潜在风险客户预测。
在潜在风险行业预测上,基于多维度数据对行业进行细分,根据行业信息建立关系挖掘模型,展示每个行业之间的关联度,如果某一行业发生了行业风险或高风险事件,可以及时预测未来有潜在风险的关联行业,金融机构从而可对相关行业的风险做出预判,尽早地发现并规避风险。
在潜在风险客户预测上,通过知识图谱整合和关联企业内部结构化数据、非结构化数据以及互联网采集数据、第三方合作数据,发现和建立企业与企业之间的集团关系、投资关系、上下游关系、担保关系,企业与个人之间的任职、实际控制、一致行动关系,及时预测未来有潜在风险的关联企业。
风控流程图
精准营销
针对个人客户,知识图谱可以通过链接的多个数据源,形成对用户或用户群体的完整知识体系描述,挖掘已有客户的潜在需求,针对性地推送相关产品,为客户提供营销服务。
例如,金融公司的市场经理用知识图谱去分析待销售用户群体之间的关系,去发现他们的共同爱好,从而更有针对性地对这类用户人群制定营销策略。如果对知识图谱扩展(如个人爱好、电商交易数据、社交数据等),还可以更加精准地分析客户行为,进行精准推送。
针对企业级客户,通过分析包括企业基础数据、投资关系、任职关系、专利数据、招投标数据、招聘数据、诉讼数据、失信数据、新闻咨询等企业数据勾画出企业客户的资金关系、法人关系、上下游投资关系、相似企业业务关系等构建起企业知识图谱,为企业推荐合适产品、服务。
营销流程图
智能搜索和数据可视化
智能搜索的功能指的是,知识图谱能够在语义上扩展用户的搜索关键词,从而返回更丰富、更全面的信息。
比如,搜索某个人的身份证号,可以返 回与这个人相关的所有历史借款记录、联系人关系和其他相关的标签(如黑名单等)。这些结果可以用图形网络的方式展示,从而把复杂的信息以直观明了的图像呈现出来,让使用者对隐藏信息的来龙去脉一目了然。