作者:mantchs 著作权归作者所有。AI开发者获得授权转载,禁止二次转载 https://github.com/NLP-LOVE/ML-NLP
注:封面图片来自网络
决策树
什么是决策树
1.决策树的基本思想
其实用一下图片能更好的理解LR模型和决策树模型算法的根本区别,我们可以思考一下一个决策问题:是否去相亲,一个女孩的母亲要给这个女海介绍对象。
大家都看得很明白了吧!LR模型是一股脑儿的把所有特征塞入学习,而决策树更像是编程语言中的if-else一样,去做条件判断,这就是根本性的区别。
2.“树”的成长过程
决策树基于“树”结构进行决策的,这时我们就要面临两个问题 :
- “树”怎么长。
- 这颗“树”长到什么时候停。
弄懂了这两个问题,那么这个模型就已经建立起来了,决策树的总体流程是“分而治之”的思想,一是自根至叶的递归过程,一是在每个中间节点寻找一个“划分”属性,相当于就是一个特征属性了。接下来我们来逐个解决以上两个问题。
这颗“树”长到什么时候停
- 当前结点包含的样本全属于同一类别,无需划分;例如:样本当中都是决定去相亲的,属于同一类别,就是不管特征如何改变都不会影响结果,这种就不需要划分了。
- 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;例如:所有的样本特征都是一样的,就造成无法划分了,训练集太单一。
- 当前结点包含的样本集合为空,不能划分。
3."树"怎么长
在生活当中,我们都会碰到很多需要做出决策的地方,例如:吃饭地点、数码产品购买、旅游地区等,你会发现在这些选择当中都是依赖于大部分人做出的选择,也就是跟随大众的选择。其实在决策树当中也是一样的,当大部分的样本都是同一类的时候,那么就已经做出了决策。
我们可以把大众的选择抽象化,这就引入了一个概念就是纯度,想想也是如此,大众选择就意味着纯度越高。好,在深入一点,就涉及到一句话:信息熵越低,纯度越高。我相信大家或多或少都听说过“熵”这个概念,信息熵通俗来说就是用来度量包含的“信息量”,如果样本的属性都是一样的,就会让人觉得这包含的信息很单一,没有差异化,相反样本的属性都不一样,那么包含的信息量就很多了。
一到这里就头疼了,因为马上要引入信息熵的公式,其实也很简单:
Pk表示的是:当前样本集合D中第k类样本所占的比例为Pk。
信息增益
废话不多说直接上公式:
看不懂的先不管,简单一句话就是:划分前的信息熵--划分后的信息熵。表示的是向纯度方向迈出的“步长”。
好了,有了前面的知识,我们就可以开始“树”的生长了。
3.1 ID3算法
解释:在根节点处计算信息熵,然后根据属性依次划分并计算其节点的信息熵,用根节点信息熵--属性节点的信息熵=信息增益,根据信息增益进行降序排列,排在前面的就是第一个划分属性,其后依次类推,这就得到了决策树的形状,也就是怎么“长”了。
如果不理解的,可以查看我分享的图片示例,结合我说的,包你看懂:
不过,信息增益有一个问题:对可取值数目较多的属性有所偏好,例如:考虑将“编号”作为一个属性。为了解决这个问题,引出了另一个 算法C4.5。
3.2 C4.5
为了解决信息增益的问题,引入一个信息增益率:
其中:
属性a的可能取值数目越多(即V越大),则IV(a)的值通常就越大。**信息增益比本质:是在信息增益的基础之上乘上一个惩罚参数。特征个数较多时,惩罚参数较小;特征个数较少时,惩罚参数较大。不过有一个缺点:
- 缺点:信息增益率偏向取值较少的特征。
使用信息增益率:基于以上缺点,并不是直接选择信息增益率最大的特征,而是现在候选特征中找出信息增益高于平均水平的特征,然后在这些特征中再选择信息增益率最高的特征。
3.3 CART算法
数学家真实聪明,想到了另外一个表示纯度的方法,叫做基尼指数(讨厌的公式):
表示在样本集合中一个随机选中的样本被分错的概率。举例来说,现在一个袋子里有3种颜色的球若干个,伸手进去掏出2个球,颜色不一样的概率,这下明白了吧。Gini(D)越小,数据集D的纯度越高。
举个例子
假设现在有特征 “学历”,此特征有三个特征取值:“本科”,“硕士”, “博士”,
当使用“学历”这个特征对样本集合D进行划分时,划分值分别有三个,因而有三种划分的可能集合,划分后的子集如下:
1.划分点:“本科”,划分后的子集合 :{本科},{硕士,博士}
2.划分点:“硕士”,划分后的子集合 :{硕士},{本科,博士}
3.划分点:“硕士”,划分后的子集合 :{博士},{本科,硕士}}
对于上述的每一种划分,都可以计算出基于 划分特征= 某个特征值 将样本集合D划分为两个子集的纯度:
因而对于一个具有多个取值(超过2个)的特征,需要计算以每一个取值作为划分点,对样本D划分之后子集的纯度Gini(D,Ai),(其中Ai 表示特征A的可能取值)
然后从所有的可能划分的Gini(D,Ai)中找出Gini指数最小的划分,这个划分的划分点,便是使用特征A对样本集合D进行划分的最佳划分点。到此就可以长成一棵“大树”了。
3.4 三种不同的决策树
- ID3:取值多的属性,更容易使数据更纯,其信息增益更大。 训练得到的是一棵庞大且深度浅的树:不合理。
- C4.5:采用信息增益率替代信息增益。
- CART:以基尼系数替代熵,最小化不纯度,而不是最大化信息增益。
树形结构为什么不需要归一化?
因为数值缩放不影响分裂点位置,对树模型的结构不造成影响。按照特征值进行排序的,排序的顺序不变,那么所属的分支以及分裂点就不会有不同。而且,树模型是不能进行梯度下降的,因为构建树模型(回归树)寻找最优点时是通过寻找最优分裂点完成的,因此树模型是阶跃的,阶跃点是不可导的,并且求导没意义,也就不需要归一化。
既然树形结构(如决策树、RF)不需要归一化,那为何非树形结构比如Adaboost、SVM、LR、Knn、KMeans之类则需要归一化。
对于线性模型,特征值差别很大时,运用梯度下降的时候,损失等高线是椭圆形,需要进行多次迭代才能到达最优点。但是如果进行了归一化,那么等高线就是圆形的,促使SGD往原点迭代,从而导致需要的迭代次数较少。
分类决策树和回归决策树的区别
Classification And Regression Tree(CART)是决策树的一种,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree),两者在建树的过程稍有差异。
回归树:
CART回归树是假设树为二叉树,通过不断将特征进行分裂。比如当前树结点是基于第j个特征值进行分裂的,设该特征值小于s的样本划分为左子树,大于s的样本划分为右子树。
而CART回归树实质上就是在该特征维度对样本空间进行划分,而这种空间划分的优化是一种NP难问题,因此,在决策树模型中是使用启发式方法解决。典型CART回归树产生的目标函数为:
因此,当我们为了求解最优的切分特征j和最优的切分点s,就转化为求解这么一个目标函数:
所以我们只要遍历所有特征的的所有切分点,就能找到最优的切分特征和切分点。最终得到一棵回归树。
参考文章:经典算法详解--CART分类决策树、回归树和模型树
决策树如何剪枝
决策树的剪枝基本策略有 预剪枝 (Pre-Pruning) 和 后剪枝 (Post-Pruning)。
- 预剪枝:其中的核心思想就是,在每一次实际对结点进行进一步划分之前,先采用验证集的数据来验证如果划分是否能提高划分的准确性。如果不能,就把结点标记为叶结点并退出进一步划分;如果可以就继续递归生成节点。
- 后剪枝:后剪枝则是先从训练集生成一颗完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来泛化性能提升,则将该子树替换为叶结点。
参考文章:决策树及决策树生成与剪枝
代码实现:
https://github.com/NLP-LOVE/ML-NLP/blob/master/Machine Learning/3.Desition Tree/DecisionTree.ipynb
随机森林
什么是随机森林
1.Bagging思想
Bagging是bootstrap aggregating。思想就是从总体样本当中随机取一部分样本进行训练,通过多次这样的结果,进行投票获取平均值作为结果输出,这就极大可能的避免了不好的样本数据,从而提高准确度。因为有些是不好的样本,相当于噪声,模型学入噪声后会使准确度不高。
举个例子:
假设有1000个样本,如果按照以前的思维,是直接把这1000个样本拿来训练,但现在不一样,先抽取800个样本来进行训练,假如噪声点是这800个样本以外的样本点,就很有效的避开了。重复以上操作,提高模型输出的平均值。
2.随机森林
Random Forest(随机森林)是一种基于树模型的Bagging的优化版本,一棵树的生成肯定还是不如多棵树,因此就有了随机森林,解决决策树泛化能力弱的特点。(可以理解成三个臭皮匠顶过诸葛亮)
而同一批数据,用同样的算法只能产生一棵树,这时Bagging策略可以帮助我们产生不同的数据集。Bagging策略来源于bootstrap aggregation:从样本集(假设样本集N个数据点)中重采样选出Nb个样本(有放回的采样,样本数据点个数仍然不变为N),在所有样本上,对这n个样本建立分类器(ID3C4.5CARTSVMLOGISTIC),重复以上两步m次,获得m个分类器,最后根据这m个分类器的投票结果,决定数据属于哪一类。
每棵树的按照如下规则生成:
- 如果训练集大小为N,对于每棵树而言,随机且有放回地从训练集中的抽取N个训练样本,作为该树的训练集;
- 如果每个样本的特征维度为M,指定一个常数m<<M,随机地从M个特征中选取m个特征子集,每次树进行分裂时,从这m个特征中选择最优的;
- 每棵树都尽最大程度的生长,并且没有剪枝过程。
一开始我们提到的随机森林中的“随机”就是指的这里的两个随机性。两个随机性的引入对随机森林的分类性能至关重要。由于它们的引入,使得随机森林不容易陷入过拟合,并且具有很好得抗噪能力(比如:对缺省值不敏感)。
总的来说就是随机选择样本数,随机选取特征,随机选择分类器,建立多颗这样的决策树,然后通过这几课决策树来投票,决定数据属于哪一类(投票机制有一票否决制、少数服从多数、加权多数)
随机森林分类效果的影响因素
- 森林中任意两棵树的相关性:相关性越大,错误率越大;
- 森林中每棵树的分类能力:每棵树的分类能力越强,整个森林的错误率越低。
减小特征选择个数m,树的相关性和分类能力也会相应的降低;增大m,两者也会随之增大。所以关键问题是如何选择最优的m(或者是范围),这也是随机森林唯一的一个参数。
随机森林有什么优缺点
优点:
- 在当前的很多数据集上,相对其他算法有着很大的优势,表现良好。
- 它能够处理很高维度(feature很多)的数据,并且不用做特征选择(因为特征子集是随机选择的)。
- 在训练完后,它能够给出哪些feature比较重要。
- 训练速度快,容易做成并行化方法(训练时树与树之间是相互独立的)。
- 在训练过程中,能够检测到feature间的互相影响。
- 对于不平衡的数据集来说,它可以平衡误差。
- 如果有很大一部分的特征遗失,仍可以维持准确度。
缺点:
- 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。
- 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的。
随机森林如何处理缺失值?
根据随机森林创建和训练的特点,随机森林对缺失值的处理还是比较特殊的。
- 首先,给缺失值预设一些估计值,比如数值型特征,选择其余数据的中位数或众数作为当前的估计值
- 然后,根据估计的数值,建立随机森林,把所有的数据放进随机森林里面跑一遍。记录每一组数据在决策树中一步一步分类的路径.
- 判断哪组数据和缺失数据路径最相似,引入一个相似度矩阵,来记录数据之间的相似度,比如有N组数据,相似度矩阵大小就是N*N
- 如果缺失值是类别变量,通过权重投票得到新估计值,如果是数值型变量,通过加权平均得到新的估计值,如此迭代,直到得到稳定的估计值。
其实,该缺失值填补过程类似于推荐系统中采用协同过滤进行评分预测,先计算缺失特征与其他特征的相似度,再加权得到缺失值的估计,而随机森林中计算相似度的方法(数据在决策树中一步一步分类的路径)乃其独特之处。
什么是OOB?随机森林中OOB是如何计算的,它有什么优缺点?
OOB:
上面我们提到,构建随机森林的关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error(out-of-bag error)。
bagging方法中Bootstrap每次约有1/3的样本不会出现在Bootstrap所采集的样本集合中,当然也就没有参加决策树的建立,把这1/3的数据称为袋外数据oob(out of bag),它可以用于取代测试集误差估计方法。
袋外数据(oob)误差的计算方法如下:
- 对于已经生成的随机森林,用袋外数据测试其性能,假设袋外数据总数为O,用这O个袋外数据作为输入,带进之前已经生成的随机森林分类器,分类器会给出O个数据相应的分类
- 因为这O条数据的类型是已知的,则用正确的分类与随机森林分类器的结果进行比较,统计随机森林分类器分类错误的数目,设为X,则袋外数据误差大小=X/O
优缺点:
这已经经过证明是无偏估计的,所以在随机森林算法中不需要再进行交叉验证或者单独的测试集来获取测试集误差的无偏估计。
随机森林的过拟合问题
你已经建了一个有10000棵树的随机森林模型。在得到0.00的训练误差后,你非常高兴。但是,验证错误是34.23。到底是怎么回事?你还没有训练好你的模型吗?
答:该模型过度拟合,因此,为了避免这些情况,我们要用交叉验证来调整树的数量。
7.代码实现:
https://github.com/NLP-LOVE/ML-NLP/blob/master/Machine Learning/3.1 Random Forest/RandomForestRegression.ipynb
梯度提升决策树(GBDT)
解释一下GBDT算法的过程
GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是Boosting的思想。
1.Boosting思想
Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。
Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中,各基分类器之间无强依赖,可以进行并行训练。
2.GBDT原来是这么回事
GBDT的原理很简单,就是所有弱分类器的结果相加等于预测值,然后下一个弱分类器去拟合误差函数对预测值的残差(这个残差就是预测值与真实值之间的误差)。当然了,它里面的弱分类器的表现形式就是各棵树。
举一个非常简单的例子,比如我今年30岁了,但计算机或者模型GBDT并不知道我今年多少岁,那GBDT咋办呢?
- 它会在第一个弱分类器(或第一棵树中)随便用一个年龄比如20岁来拟合,然后发现误差有10岁;
- 接下来在第二棵树中,用6岁去拟合剩下的损失,发现差距还有4岁;
- 接着在第三棵树中用3岁拟合剩下的差距,发现差距只有1岁了;
- 最后在第四课树中用1岁拟合剩下的残差,完美。
- 最终,四棵树的结论加起来,就是真实年龄30岁(实际工程中,gbdt是计算负梯度,用负梯度近似残差)。
为何gbdt可以用用负梯度近似残差呢?
回归任务下,GBDT 在每一轮的迭代时对每个样本都会有一个预测值,此时的损失函数为均方差损失函数,
那此时的负梯度是这样计算的
所以,当损失函数选用均方损失函数是时,每一次拟合的值就是(真实值 - 当前模型预测的值),即残差。此时的变量是
,即“当前预测模型的值”,也就是对它求负梯度。
训练过程
简单起见,假定训练集只有4个人:A,B,C,D,他们的年龄分别是14,16,24,26。其中A、B分别是高一和高三学生;C,D分别是应届毕业生和工作两年的员工。如果是用一棵传统的回归决策树来训练,会得到如下图所示结果:
现在我们使用GBDT来做这件事,由于数据太少,我们限定叶子节点做多有两个,即每棵树都只有一个分枝,并且限定只学两棵树。我们会得到如下图所示结果:
在第一棵树分枝和图1一样,由于A,B年龄较为相近,C,D年龄较为相近,他们被分为左右两拨,每拨用平均年龄作为预测值。
- 此时计算残差(残差的意思就是:A的实际值 - A的预测值 = A的残差),所以A的残差就是实际值14 - 预测值15 = 残差值-1。
- 注意,A的预测值是指前面所有树累加的和,这里前面只有一棵树所以直接是15,如果还有树则需要都累加起来作为A的预测值。
然后拿它们的残差-1、1、-1、1代替A B C D的原值,到第二棵树去学习,第二棵树只有两个值1和-1,直接分成两个节点,即A和C分在左边,B和D分在右边,经过计算(比如A,实际值-1 - 预测值-1 = 残差0,比如C,实际值-1 - 预测值-1 = 0),此时所有人的残差都是0。残差值都为0,相当于第二棵树的预测值和它们的实际值相等,则只需把第二棵树的结论累加到第一棵树上就能得到真实年龄了,即每个人都得到了真实的预测值。
换句话说,现在A,B,C,D的预测值都和真实年龄一致了。Perfect!
- A: 14岁高一学生,购物较少,经常问学长问题,预测年龄A = 15 – 1 = 14
- B: 16岁高三学生,购物较少,经常被学弟问问题,预测年龄B = 15 1 = 16
- C: 24岁应届毕业生,购物较多,经常问师兄问题,预测年龄C = 25 – 1 = 24
- D: 26岁工作两年员工,购物较多,经常被师弟问问题,预测年龄D = 25 1 = 26
所以,GBDT需要将多棵树的得分累加得到最终的预测得分,且每一次迭代,都在现有树的基础上,增加一棵树去拟合前面树的预测结果与真实值之间的残差。
梯度提升和梯度下降的区别和联系是什么?
下表是梯度提升算法和梯度下降算法的对比情况。可以发现,两者都是在每 一轮迭代中,利用损失函数相对于模型的负梯度方向的信息来对当前模型进行更 新,只不过在梯度下降中,模型是以参数化形式表示,从而模型的更新等价于参 数的更新。而在梯度提升中,模型并不需要进行参数化表示,而是直接定义在函 数空间中,从而大大扩展了可以使用的模型种类。
GBDT的优点和局限性有哪些?
1.优点
- 预测阶段的计算速度快,树与树之间可并行化计算。
- 在分布稠密的数据集上,泛化能力和表达能力都很好,这使得GBDT在Kaggle的众多竞赛中,经常名列榜首。
- 采用决策树作为弱分类器使得GBDT模型具有较好的解释性和鲁棒性,能够自动发现特征间的高阶关系,并且也不需要对数据进行特殊的预处理如归一化等。
2.局限性
- GBDT在高维稀疏的数据集上,表现不如支持向量机或者神经网络。
- GBDT在处理文本分类特征问题上,相对其他模型的优势不如它在处理数值特征时明显。
- 训练过程需要串行训练,只能在决策树内部采用一些局部并行的手段提高训练速度。
RF(随机森林)与GBDT之间的区别与联系
相同点:
都是由多棵树组成,最终的结果都是由多棵树一起决定。
不同点:
- 组成随机森林的树可以分类树也可以是回归树,而GBDT只由回归树组成
- 组成随机森林的树可以并行生成,而GBDT是串行生成
- 随机森林的结果是多数表决表决的,而GBDT则是多棵树累加之和
- 随机森林对异常值不敏感,而GBDT对异常值比较敏感
- 随机森林是减少模型的方差,而GBDT是减少模型的偏差
- 随机森林不需要进行特征归一化。而GBDT则需要进行特征归一化
代码实现:
https://github.com/NLP-LOVE/ML-NLP/blob/master/Machine Learning/3.2 GBDT/GBDT_demo.ipynb