2019腾讯广告算法大赛方案分享(冠军)

2019-08-29 16:37:06 浏览数 (1)

复赛完整方案代码即将开源,敬请期待! 俞士纶(Philip S. Yu)教授的评价“冠军队伍已经在有意无意使用“广度学习”的方法” 评委讲到“这是最接近腾讯真实业务的方案”

复赛代码地址:

bettenW/Tencent2019_Finals_Rank1st​github.com

写在前面

从初赛冠军、复赛冠军,然后到最佳答辩,一路披荆斩棘,再次感谢队友(哈尔滨工业大学二年级硕士生刘育源、中山大学微软亚洲研究院联合培养博士生郭达雅)。

本文将给出冠军完整方案,全文内容架构将依托于答辩PPT,具体细节也会结合代码进行讲解。当然,思路为主,代码为辅,希望这篇分享能够给予你更多的启发。

下面就让跟随我一起探索这荣获最高嘉奖的方案 !

赛题理解

  1. 数据

历史日志数据:广告请求时间、用户id、广告位id、竞价广告信息等

用户信息数据:包含用户id、年龄、性别、地域、行为兴趣等

广 告 数 据:广告操作信息、广告静态信息

2. 目标

预测广告的日曝光量

3. 评价指标

评价指标由两部分组成,准确性指标和出价单调性指标。

最终得分是将两个指标组合一起,前者控制准确性,后者控制单调性。

4. 训练目标

这里我们对训练目标进行了不断优化,首先是最基本的训练目标,即广告日曝光量。然后考虑到0会导致梯度不平滑,所以对训练目标做了log变换,保证梯度平滑。

为了符合业务直觉,我们在训练时进行了单调性的考虑,而不是在训练后进行单调性修正。即考虑了出价变量,保证训练出来的结果符合单调性。

最后将基础曝光的训练目标和考虑单调性的训练目标进行结合,也就得到了最后一个公式,即一个模型预测基本训练目标,一个模型预测考虑单调性的训练目标。

5. 数据集划分

这部分也是我们队伍的一个关键提分点,能从87.6提升到87.8,当然在我刚87.x分段时,能提升4个千分点。

我们知道复赛A榜训练集和测试集是连续的,即10号-22号训练集,23号为测试集。复赛B榜则是不连续的,没有给出23号的标签,直接预测24号。

面对这种“跨天”预测,难度是非常大的,因为日期越近的信息是越与当天相近的,因此前一天的信息是非常重要的。

所以我们利用“远程监督”的方式,就是利用现有的标注数据,即10-22号数据,训练一个模型,给未标注数据(23号数据)进行标注,然后再将10-22与23号合并成训练集进行训练,预测最终的结果。

特征工程

1. 特征提取思路

提取思路主要从两部分考虑,历史信息和整体信息,更细致些就是前一天、最近五天、五折交叉统计和除当天外所有天的统计特征。

接下来我们构造了四个基础特征,大部分的统计特征都是围绕着这四个来构造的。当然我这里还考虑了商品ID和账户ID的构造,代码如下:

代码语言:javascript复制
# 构造基本特征
for col in ['aid','goods_id','account_id']:
    result = logs.groupby([col,'day'], as_index=False)['isExp'].agg({
        col '_cnts'      : 'count',
        col '_sums'      : 'sum',
        col '_rate'      : 'mean'
        })
    result[col '_negs'] = result[col '_cnts'] - result[col '_sums']
    data = data.merge(result, how='left', on=[col,'day'])

2. 如何构造新广告的特征

初赛A 总广告:1954 旧广告: 1361 新广告:593 新广告占比:30.348%

初赛B 总广告:3750 旧广告: 1382 新广告:2368 新广告占比:63.147%

上面是对初赛新旧广告的统计,当然复赛也存在大量的新广告,复赛B榜新旧广告基本55开。新广告是没有历史信息的,所以如何构造新广告的特征,对新广告进行历史和整体性的描述成了提分的关键。

这里我进行了模糊构造,虽然我们不知道新广告的历史信息,但是我们知道广告账户ID下面所包含旧广告的历史信息。因此,将广告账户ID与旧广告的广告竟胜率进行组合,可以构造出广告账户ID下广告竟胜率的均值/中位数等。这样我们就可以得到了新广告在广告账户ID下广告竟胜率的统计值。

这里可以构造前一天、最近五天、五折交叉统计和除当天外所有天等统计特征。

3. 进一步扩展

经过上面的构造,可以得到很多新构造的统计特征,可以是前一天的、最近五天的,或者五折交叉统计的。我把这些值成为“假数值”,相对的就是“真数值”,即每天我们都知道广告的竞争总次数(从10-24号数据,包括测试集)。将假数值和真数值进行交叉,如广告竞争胜率(假)*广告竞争总数(真),这样就能得到的更接近真实值的特征。

4. word2vec和deepwalk

word2vec

这里我们提取了用户的曝光记录,并将其转化为文本序列,然后使用word2vec算法对广告进行嵌入,就可以得到关于广告ID的embedding,或者商品ID的embedding。

具体构建文本序列方式,首先是对日志数据按天进行排序,然后是按天构建uid的行为序列并转化为文本。代码如下:

代码语言:javascript复制
#log日志数据,pivot主键(uid),f(aid)
sentence=[]
dic={}
day=0
log=log.sort_values(by='request_day')
log['day']=log['request_day']    
   
for item in log[['day',pivot,f]].values:
    if day!=item[0]:
        for key in dic:
            sentence.append(dic[key])
        dic={}
        day=item[0]
    try:
        dic[item[1]].append(str(int(item[2])))
    except:
        dic[item[1]]=[str(int(item[2]))]
for key in dic:
    sentence.append(dic[key]) 

接下来就是构建广告ID的embedding向量,代码如下:

代码语言:javascript复制
model = Word2Vec(sentence, size=L, window=10, min_count=1, workers=10,iter=10)

values=set(log[f].values)
w2v=[]

for v in values:
    try:
        a=[int(v)]
        a.extend(model[str(v)])
        w2v.append(a)
    except:
        pass

out_df=pd.DataFrame(w2v)
names=[f]

这里不仅可以构造uid到广告id,还可以是uid到商品id,uid到账户id。

DeepWalk

在推荐场景下,数据对象之间更多呈现的是图结构。典型的场景是由用户行为数据生成的和广告的全局关系图。这个时候word2vec就不能很好的展现这层关系,所以我们选择了Graph Embeding的方式,具体的使用了DeepWalk,可以将用户的曝光记录转化为关系图。这里引用阿里论文中的一张图,来展现DeepWalk的算法流程:

DeepWalk的算法流程(引自阿里论文)

第一步:构建用户的行为序列

第二步:我们基于这些行为序列构建了物品关系图,可以看出,物品A,B之间的边产生的原因就是因为用户U1先后购买了物品A和物品B,所以产生了一条由A到B的有向边。如果后续产生了多条相同的有向边,则有向边的权重被加强。在将所有用户行为序列都转换成物品相关图中的边之后,全局的物品相关图就建立起来了。

第三步:采用随机游走的方式随机选择起始点,重新产生物品序列。

第四步:最终将这些物品序列输入word2vec模型,生成最终的物品Embedding向量

具体对应代码如下:

guoday/Tencent2019_Preliminary_Rank1st​github.com

这里有两个问题:guoday/Tencent2019_Preliminary_Rank1st这里有两个问题:

1. 只有在日志中曝光过的广告才会有相应的嵌入向量,通过广告有无嵌入向量,会泄露了无曝光广告的标签

2. 测试数据中存在曝光非0但无嵌入向量的广告,这在训练集中是不存在的,导致训练测试不一致

这里我们给出了解决方法,即随机掩盖掉5%广告的嵌入向量,保证训练集中也能出现无曝光的广告。

模型介绍

输入部分分为四组,分别是类别特征、经过Key-Value Memory处理的稠密特征、Word2Vec和DeepWalk得到了embedding向量。然后进入Batch Norm Layer,最后是MLP层。

压缩交互网络CIN

我们使用了压缩交互网络(CIN),它考虑了以下因素:

(1)交互是在向量层次上应用的,而不是在位层次上;

(2)高阶特征交互是明确测量的;

(3)网络的复杂度不会随着相互作用的程度。

每个维度上的外积用于特征交互。张量

是进一步学习的中间结果。

具体的可以看论文xDeepFM:

xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems​xueshu.baidu.com

Key-Value Memory

这里将介绍键值存储(Key-Value Memory)的神经模型实现浮点数到向量的映射。

具体步骤:

(1)Key addressing部分,寻址过程,此处用到softmax函数。计算上述选出的每个memory的概率值。

(2)Attention部分,对于不同的Key addression部分的重要性不同,所以使用attention给予不同的权重概率。

(3)Value reading部分,对上一个步骤的概率下进行加权求和得到答案信息。

参考论文:

https://arxiv.org/pdf/1606.03126.pdf​arxiv.org

规则统计

先让我们进行一些基本的数据分析,这里看的是历史曝光数据。

一个广告在不同的广告位上有不同的胜率

同广告的请求数在不同的日期存在差异

可以看出对于同一个广告在不同广告位上有着不同的胜率,并且在不同的日期,它的请求数也存在很大的差异。针对这两点因素,也就能构造出统计方式来计算广告日曝光量。

其中,

表示广告在广告位

上的历史胜率。

表示广告在广告位

上发出的请求总数。

这里我们对比了三种计算方法,可以看出,直接用历史曝光填充效果最差。接下来就是用竞争胜率*请求数,分数会高很多,更近一步就是按广告位分开计算,达到最好的效果。这里是在验证集上进行的计算。

历史胜率

的具体计算方式

先来看一张图

不同天数填充在验证集上的得分

最直观的感受就是,离预测当天越近的数据准确度越高,所以相应的权重也应该越大。这样我们就可以给历史每天不同的权重,然后进行加权。就可以得到历史胜率的计算公式,如下:

权重

计算方式

我们提出了三种计算方法:

方式1:

方式2:

方式3:

这里使用线性搜索寻找最优参数(

),依据验证集分数来确定最优参数的选择。

在最优参数下三总方式在验证集上的得分对比

这里我们对三种权重计算方式进行对比,并添加最后一直接填充作为对照实验。可以明显看出方法三在验证集上的效果最好。

最终融合

这里使用两种融合方式,分别是算术平均和几何平均。

算术平均:

几何平均:

由于

的评分规则,算术平均会使融合的结果偏大,如:

显然不符合

的直觉,越小的值对评分影响越大,算术平均会导致更大的误差。所以选择几何平均,能够使结果偏向小值,如下:

模型、规则以及不同融合方式验证集得分对比:

更细致的融合方式:

模型和规则在不同的转化类型上的得分

  • 无论是模型还是规则,预测结果在不同的转化类型上得分差异都很大
  • 模型和规则在不同的转化类型上得分也存在差 异,上图表示了模型和规则在不同转化类型上的表现。

根据模型和规则在不同转化类型上的得分现,调整权重值,线上可以获得0.5个千的提升 。

结果分析

可以看出LightGBM单模既可以得到第一名的成绩,不过,为了追求更高的分数,我们团队也做了更多的尝试。

主要创新

提出了一种基于Key-Value Memory的浮点数映射成向量的方法

  • 相较于直接使用浮点数,该方法保留更多的语义信息
  • 相较于分桶并作为类别特征的方法,该方法的相邻向量具有相关性
  • 相较于数值×向量的方法,该方法具有非线性的特点

解决Word2Vec和DeepWalk等无监督学习造成的数据泄露问题

  • 充分利用了曝光日志记录,基于用户行为对广告进行聚类

问题思考

本次比赛虽然使用到出价,但并没有将出价作为特征输入模型中。不同的出价其广告的竞争力会有所不同,将直接影响了曝光量,因此出价是非常重要的特征。

  • 加入约束条件保证模型的单调性
  • 设计出价单调递增的模型,如输出为

本次比赛并没有用到用户属性相关数据,根据广告投放人群信息,或许可以获得更多有用的内容。

参考链接:

https://zhuanlan.zhihu.com/p/64200072​zhuanlan.zhihu.com

写在最后

竞赛社区(数据竞赛的一站式服务

近期我们公众号和国内的开源组织Datawhale还有杰少一起成立了一个数据竞赛知识星球,并且邀请了国内的很多知名实战高手和赛圈的大佬,在推出的三天中也已经有了500多的用户报名,如果你真的对实战感兴趣而且希望好好学习的话,欢迎通过扫描下面的二维码进行报名,这样可以帮助您省下9元的报名费用,

0 人点赞