malloc.c

2019-03-14 15:34:48 浏览数 (2)

glibc-2.14中的malloc.c源代码,供研究malloc和free实现使用:

代码语言:javascript复制
 /* Malloc implementation for multiple threads without lock contention.
  
 			   Copyright (C) 1996-2009, 2010, 2011 Free Software Foundation, Inc.
 
 			   This file is part of the GNU C Library.
 
 			   Contributed by Wolfram Gloger <wg@malloc.de>
 
 and Doug Lea <dl@cs.oswego.edu>, 2001.
 
 
 
 			   The GNU C Library is free software; you can redistribute it and/or
 
 			   modify it under the terms of the GNU Lesser General Public License as
 
 			   published by the Free Software Foundation; either version 2.1 of the
 
 			   License, or (at your option) any later version.
 
 
 
 			   The GNU C Library is distributed in the hope that it will be useful,
 
 			   but WITHOUT ANY WARRANTY; without even the implied warranty of
 
 			   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 
 			   Lesser General Public License for more details.
 
 
 
 			   You should have received a copy of the GNU Lesser General Public
 
 			   License along with the GNU C Library; see the file COPYING.LIB. If not,
 
 			   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 
 			   Boston, MA 02111-1307, USA. */
 
 
 
 /*
 
 			  This is a version (aka ptmalloc2) of malloc/free/realloc written by
 
 			  Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
 
 
 
 			  There have been substantial changesmade after the integration into
 
 			  glibc in all parts of the code. Do not look for much commonality
 
 			  with the ptmalloc2 version.
 
 
 
 * Version ptmalloc2-20011215
 
 			  based on:
 
 			  VERSION 2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea (dl at gee)
 
 
 
 * Quickstart
 
 
 
 In order to compile this implementation, a Makefile is provided with
 
 			  the ptmalloc2 distribution, which has pre-defined targets for some
 
 			  popular systems (e.g. "make posix" for Posix threads). All that is
 
 			  typically required with regard to compiler flags is the selection of
 
 			  the thread package via defining one out of USE_PTHREADS, USE_THR or
 
 			  USE_SPROC. Check the thread-m.h file for what effects this has.
 
 			  Many/most systems will additionally require USE_TSD_DATA_HACK to be
 
 			  defined, so this is the default for "make posix".
 
 
 
 * Why use this malloc?
 
 
 
 			  This is not the fastest, most space-conserving, most portable, or
 
 			  most tunable malloc ever written. However it is among the fastest
 
 while also being among the most space-conserving, portable and tunable.
 
 			  Consistent balance across these factors results in a good general-purpose
 
 			  allocator for malloc-intensive programs.
 
 
 
 			  The main properties of the algorithms are:
 
 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
 
 			    with ties normally decided via FIFO (i.e. least recently used).
 
 * For small (<= 64 bytes by default) requests, it is a caching
 
 			    allocator, that maintains pools of quickly recycled chunks.
 
 * In between, and for combinations of large and small requests, it does
 
 			    the best it can trying to meet both goals at once.
 
 * For very large requests (>= 128KB by default), it relies on system
 
 			    memory mapping facilities, if supported.
 
 
 
 For a longer but slightly out of date high-level description, see
 
 			     http://gee.cs.oswego.edu/dl/html/malloc.html
 
 
 
 			  You may already by default be using a C library containing a malloc
 
 			  that is based on some version of this malloc (for example in
 
 			  linux). You might still want to use the one in this file in order to
 
 			  customize settings or to avoid overheads associated with library
 
 			  versions.
 
 
 
 * Contents, described in more detail in "description of public routines" below.
 
 
 
 			  Standard (ANSI/SVID/...) functions:
 
 			    malloc(size_t n);
 
 			    calloc(size_t n_elements, size_t element_size);
 
 			    free(Void_t* p);
 
 			    realloc(Void_t* p, size_t n);
 
 			    memalign(size_t alignment, size_t n);
 
 			    valloc(size_t n);
 
 			    mallinfo()
 
 			    mallopt(int parameter_number, int parameter_value)
 
 
 
 			  Additional functions:
 
 			    independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
 
 			    independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
 
 			    pvalloc(size_t n);
 
 			    cfree(Void_t* p);
 
 			    malloc_trim(size_t pad);
 
 			    malloc_usable_size(Void_t* p);
 
 			    malloc_stats();
 
 
 
 * Vital statistics:
 
 
 
 			  Supported pointer representation: 4 or 8 bytes
 
 			  Supported size_t  representation: 4 or 8 bytes
 
 			       Note that size_t is allowed to be 4 bytes even if pointers are 8.
 
 			       You can adjust this by defining INTERNAL_SIZE_T
 
 
 
 			  Alignment: 2 * sizeof(size_t) (default)
 
 (i.e., 8 byte alignment with 4byte size_t). This suffices for
 
 			       nearly all current machines and C compilers. However, you can
 
 			       define MALLOC_ALIGNMENT to be wider than this if necessary.
 
 
 
 			  Minimum overhead per allocated chunk: 4 or 8 bytes
 
 Each malloced chunk has a hidden word of overhead holding size
 
 and status information.
 
 
 
 			  Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
 
 			              8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
 
 
 
 			       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
 
 			       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
 
 			       needed; 4 (8) for a trailing size field and 8 (16) bytes for
 
 			       free list pointers. Thus, the minimum allocatable size is
 
 			       16/24/32 bytes.
 
 
 
 			       Even a request for zero bytes (i.e., malloc(0)) returns a
 
 			       pointer to something of the minimum allocatable size.
 
 
 
 			       The maximum overhead wastage (i.e., number of extra bytes
 
 			       allocated than were requested in malloc) is less than or equal
 
 to the minimum size, except for requests >= mmap_threshold that
 
 			       are serviced via mmap(), where the worst case wastage is 2 *
 
 			       sizeof(size_t) bytes plus the remainder from a system page (the
 
 			       minimal mmap unit); typically 4096 or 8192 bytes.
 
 
 
 			  Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
 
 			               8-byte size_t: 2^64 minus about two pages
 
 
 
 			       It is assumed that (possibly signed) size_t values suffice to
 
 			       represent chunk sizes. `Possibly signed' is due to the fact
 
 			       that `size_t' may be defined on a system as either a signed or
 
 			       an unsigned type. The ISO C standard says that it must be
 
 			       unsigned, but a few systems are known not to adhere to this.
 
 			       Additionally, even when size_t is unsigned, sbrk (which is by
 
 			       default used to obtain memory from system) accepts signed
 
 			       arguments, and may not be able to handle size_t-wide arguments
 
 			       with negative sign bit. Generally, values that would
 
 			       appear as negative after accounting for overhead and alignment
 
 			       are supported only via mmap(), which does not have this
 
 			       limitation.
 
 
 
 			       Requests for sizes outside the allowed range will perform an optional
 
 			       failure action and then return null. (Requests may also
 
 			       also fail because a system is out of memory.)
 
 
 
 			  Thread-safety: thread-safe unless NO_THREADS is defined
 
 
 
 			  Compliance: I believe it is compliant with the 1997 Single Unix Specification
 
 			       Also SVID/XPG, ANSI C, and probably others as well.
 
 
 
 * Synopsis of compile-time options:
 
 
 
 			    People have reported using previous versions of this malloc on all
 
 			    versions of Unix, sometimes by tweaking some of the defines
 
 			    below. It has been tested most extensively on Solaris and
 
 			    Linux. It is also reported to work on WIN32 platforms.
 
 			    People also report using it in stand-alone embedded systems.
 
 
 
 			    The implementation is in straight, hand-tuned ANSI C. It is not
 
 			    at all modular. ( It uses a lot of macros. To be at all
 
 			    usable, this code should be compiled using an optimizing compiler
 
 (for example gcc -O3) that can simplify expressions and control
 
 			    paths. (FAQ: some macros import variables as arguments rather than
 
 			    declare locals because people reported that some debuggers
 
 			    otherwise get confused.)
 
 
 
 OPTION DEFAULT VALUE
 
 
 
 			    Compilation Environment options:
 
 
 
 			    __STD_C                    derived from C compiler defines
 
 			    WIN32 NOT defined
 
 			    HAVE_MEMCPY                defined
 
 			    USE_MEMCPY                 1 if HAVE_MEMCPY is defined
 
 			    HAVE_MMAP                  defined as 1
 
 			    MMAP_CLEARS                1
 
 			    HAVE_MREMAP                0 unless linux defined
 
 			    USE_ARENAS                 the same as HAVE_MMAP
 
 			    malloc_getpagesize         derived from system #includes, or 4096 if not
 
 			    HAVE_USR_INCLUDE_MALLOC_H NOT defined
 
 			    LACKS_UNISTD_H NOT defined unless WIN32
 
 			    LACKS_SYS_PARAM_H NOT defined unless WIN32
 
 			    LACKS_SYS_MMAN_H NOT defined unless WIN32
 
 
 
 			    Changing default word sizes:
 
 
 
 			    INTERNAL_SIZE_T            size_t
 
 			    MALLOC_ALIGNMENT           MAX (2 * sizeof(INTERNAL_SIZE_T),
 
 			                    __alignof__ (long double))
 
 
 
 			    Configuration and functionality options:
 
 
 
 			    USE_DL_PREFIX NOT defined
 
 			    USE_PUBLIC_MALLOC_WRAPPERS NOT defined
 
 			    USE_MALLOC_LOCK NOT defined
 
 			    MALLOC_DEBUG NOT defined
 
 			    REALLOC_ZERO_BYTES_FREES   1
 
 			    MALLOC_FAILURE_ACTION      errno = ENOMEM, if __STD_C defined, else no-op
 
 			    TRIM_FASTBINS              0
 
 
 
 			    Options for customizing MORECORE:
 
 
 
 			    MORECORE                   sbrk
 
 			    MORECORE_FAILURE -1
 
 			    MORECORE_CONTIGUOUS        1
 
 			    MORECORE_CANNOT_TRIM NOT defined
 
 			    MORECORE_CLEARS            1
 
 			    MMAP_AS_MORECORE_SIZE (1024 * 1024)
 
 
 
 			    Tuning options that are also dynamically changeable via mallopt:
 
 
 
 			    DEFAULT_MXFAST             64 (for 32bit), 128 (for 64bit)
 
 			    DEFAULT_TRIM_THRESHOLD     128 * 1024
 
 			    DEFAULT_TOP_PAD            0
 
 			    DEFAULT_MMAP_THRESHOLD     128 * 1024
 
 			    DEFAULT_MMAP_MAX           65536
 
 
 
 			    There are several other #defined constants and macros that you
 
 			    probably don't want to touch unless you are extending or adapting malloc. */
 
 
 
 /*
 
 			  __STD_C should be nonzero if using ANSI-standard C compiler, a C  
 
 			  compiler, or a C compiler sufficiently close to ANSI to get away
 
 			  with it.
 
 */
 
 
 
 			#ifndef __STD_C
 
 			#if defined(__STDC__) || defined(__cplusplus)
 
 			#define __STD_C     1
 
 			#else
 
 			#define __STD_C     0
 
 			#endif
 
 			#endif /*__STD_C*/
 
 
 
 
 
 /*
 
 			  Void_t* is the pointer type that malloc should say it returns
 
 */
 
 
 
 			#ifndef Void_t
 
 			#if (__STD_C || defined(WIN32))
 
 			#define Void_t      void
 
 			#else
 
 			#define Void_t      char
 
 			#endif
 
 			#endif /*Void_t*/
 
 
 
 			#if __STD_C
 
 			#include <stddef.h> /* for size_t */
 
 			#include <stdlib.h> /* for getenv(), abort() */
 
 			#else
 
 			#include <sys/types.h>
 
 			#endif
 
 
 
 			#include <malloc-machine.h>
 
 
 
 			#ifdef _LIBC
 
 			#ifdef ATOMIC_FASTBINS
 
 			#include <atomic.h>
 
 			#endif
 
 			#include <stdio-common/_itoa.h>
 
 			#include <bits/wordsize.h>
 
 			#include <sys/sysinfo.h>
 
 			#endif
 
 
 
 			#ifdef __cplusplus
 
 			extern "C" {
 
 			#endif
 
 
 
 /* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
 
 
 
 /* #define  LACKS_UNISTD_H */
 
 
 
 			#ifndef LACKS_UNISTD_H
 
 			#include <unistd.h>
 
 			#endif
 
 
 
 /* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
 
 
 
 /* #define  LACKS_SYS_PARAM_H */
 
 
 
 
 
 			#include <stdio.h> /* needed for malloc_stats */
 
 			#include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
 
 
 
 /* For uintptr_t. */
 
 			#include <stdint.h>
 
 
 
 /* For va_arg, va_start, va_end. */
 
 			#include <stdarg.h>
 
 
 
 /* For writev and struct iovec. */
 
 			#include <sys/uio.h>
 
 /* For syslog. */
 
 			#include <sys/syslog.h>
 
 
 
 /* For various dynamic linking things. */
 
 			#include <dlfcn.h>
 
 
 
 
 
 /*
 
 			  Debugging:
 
 
 
 			  Because freed chunks may be overwritten with bookkeeping fields, this
 
 			  malloc will often die when freed memory is overwritten by user
 
 			  programs. This can be very effective (albeit in an annoying way)
 
 in helping track down dangling pointers.
 
 
 
 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
 
 			  enabled that will catch more memory errors. You probably won't be
 
 			  able to make much sense of the actual assertion errors, but they
 
 			  should help you locate incorrectly overwritten memory. The checking
 
 is fairly extensive, and will slow down execution
 
 			  noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
 
 			  will attempt to check every non-mmapped allocated and free chunk in
 
 			  the course of computing the summmaries. (By nature, mmapped regions
 
 			  cannot be checked very much automatically.)
 
 
 
 			  Setting MALLOC_DEBUG may also be helpful if you are trying to modify
 
 			  this code. The assertions in the check routines spell out in more
 
 			  detail the assumptions and invariants underlying the algorithms.
 
 
 
 			  Setting MALLOC_DEBUG does NOT provide an automated mechanism for
 
 			  checking that all accesses to malloced memory stay within their
 
 			  bounds. However, there are several add-ons and adaptations of this
 
 or other mallocs available that do this.
 
 */
 
 
 
 			#ifdef NDEBUG
 
 			# define assert(expr) ((void) 0)
 
 			#else
 
 			# define assert(expr) 
 
 ((expr) 
 
 ? ((void) 0) 
 
 : __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
 
 
 
 			extern const char *__progname;
 
 
 
 			static void
 
 			__malloc_assert (const char *assertion, const char *file, unsigned int line,
 
 const char *function)
 
 {
 
 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.n",
 
 			             __progname, __progname[0] ? ": " : "",
 
 			             file, line,
 
 function ? function : "", function ? ": " : "",
 
 			             assertion);
 
 			  fflush (stderr);
 
 			  abort ();
 
 }
 
 			#endif
 
 
 
 
 
 /*
 
 			  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
 
 			  of chunk sizes.
 
 
 
 			  The default version is the same as size_t.
 
 
 
 While not strictly necessary, it is best to define this as an
 
 			  unsigned type, even if size_t is a signed type. This may avoid some
 
 			  artificial size limitations on some systems.
 
 
 
 On a 64-bit machine, you may be able to reduce malloc overhead by
 
 			  defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
 
 			  expense of not being able to handle more than 2^32 of malloced
 
 space. If this limitation is acceptable, you are encouraged to set
 
 			  this unless you are on a platform requiring 16byte alignments. In
 
 			  this case the alignment requirements turn out to negate any
 
 			  potential advantages of decreasing size_t word size.
 
 
 
 			  Implementors: Beware of the possible combinations of:
 
 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
 
 and might be the same width as int or as long
 
 - size_t might have different width and signedness as INTERNAL_SIZE_T
 
 - int and long might be 32 or 64 bits, and might be the same width
 
 To deal with this, most comparisons and difference computations
 
 			  among INTERNAL_SIZE_Ts should cast them to unsigned long, being
 
 			  aware of the fact that casting an unsigned int to a wider long does
 
 not sign-extend. (This also makes checking for negative numbers
 
 			  awkward.) Some of these casts result in harmless compiler warnings
 
 on some systems.
 
 */
 
 
 
 			#ifndef INTERNAL_SIZE_T
 
 			#define INTERNAL_SIZE_T size_t
 
 			#endif
 
 
 
 /* The corresponding word size */
 
 			#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
 
 
 
 
 
 /*
 
 			  MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
 
 			  It must be a power of two at least 2 * SIZE_SZ, even on machines
 
 for which smaller alignments would suffice. It may be defined as
 
 			  larger than this though. Note however that code and data structures
 
 			  are optimized for the case of 8-byte alignment.
 
 */
 
 
 
 
 
 			#ifndef MALLOC_ALIGNMENT
 
 /* XXX This is the correct definition. It differs from 2*SIZE_SZ only on
 
 			   powerpc32. For the time being, changing this is causing more
 
 			   compatibility problems due to malloc_get_state/malloc_set_state than
 
 			   will returning blocks not adequately aligned for long double objects
 
 			   under -mlong-double-128.
 
 
 
 			#define MALLOC_ALIGNMENT (2 * SIZE_SZ < __alignof__ (long double) 
 
 ? __alignof__ (long double) : 2 * SIZE_SZ)
 
 */
 
 			#define MALLOC_ALIGNMENT (2 * SIZE_SZ)
 
 			#endif
 
 
 
 /* The corresponding bit mask value */
 
 			#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
 
 
 
 
 
 
 
 /*
 
 			  REALLOC_ZERO_BYTES_FREES should be set if a call to
 
 			  realloc with zero bytes should be the same as a call to free.
 
 			  This is required by the C standard. Otherwise, since this malloc
 
 			  returns a unique pointer for malloc(0), so does realloc(p, 0).
 
 */
 
 
 
 			#ifndef REALLOC_ZERO_BYTES_FREES
 
 			#define REALLOC_ZERO_BYTES_FREES 1
 
 			#endif
 
 
 
 /*
 
 			  TRIM_FASTBINS controls whether free() of a very small chunk can
 
 			  immediately lead to trimming. Setting to true (1) can reduce memory
 
 			  footprint, but will almost always slow down programs that use a lot
 
 			  of small chunks.
 
 
 
 			  Define this only if you are willing to give up some speed to more
 
 			  aggressively reduce system-level memory footprint when releasing
 
 			  memory in programs that use many small chunks. You can get
 
 			  essentially the same effect by setting MXFAST to 0, but this can
 
 			  lead to even greater slowdowns in programs using many small chunks.
 
 			  TRIM_FASTBINS is an in-between compile-time option, that disables
 
 			  only those chunks bordering topmost memory from being placed in
 
 			  fastbins.
 
 */
 
 
 
 			#ifndef TRIM_FASTBINS
 
 			#define TRIM_FASTBINS  0
 
 			#endif
 
 
 
 
 
 /*
 
 			  USE_DL_PREFIX will prefix all public routines with the string 'dl'.
 
 			  This is necessary when you only want to use this malloc in one part
 
 			  of a program, using your regular system malloc elsewhere.
 
 */
 
 
 
 /* #define USE_DL_PREFIX */
 
 
 
 
 
 /*
 
 			   Two-phase name translation.
 
 			   All of the actual routines are given mangled names.
 
 			   When wrappers are used, they become the public callable versions.
 
 			   When DL_PREFIX is used, the callable names are prefixed.
 
 */
 
 
 
 			#ifdef USE_DL_PREFIX
 
 			#define public_cALLOc    dlcalloc
 
 			#define public_fREe      dlfree
 
 			#define public_cFREe     dlcfree
 
 			#define public_mALLOc    dlmalloc
 
 			#define public_mEMALIGn  dlmemalign
 
 			#define public_rEALLOc   dlrealloc
 
 			#define public_vALLOc    dlvalloc
 
 			#define public_pVALLOc   dlpvalloc
 
 			#define public_mALLINFo  dlmallinfo
 
 			#define public_mALLOPt   dlmallopt
 
 			#define public_mTRIm     dlmalloc_trim
 
 			#define public_mSTATs    dlmalloc_stats
 
 			#define public_mUSABLe   dlmalloc_usable_size
 
 			#define public_iCALLOc   dlindependent_calloc
 
 			#define public_iCOMALLOc dlindependent_comalloc
 
 			#define public_gET_STATe dlget_state
 
 			#define public_sET_STATe dlset_state
 
 			#else /* USE_DL_PREFIX */
 
 			#ifdef _LIBC
 
 
 
 /* Special defines for the GNU C library. */
 
 			#define public_cALLOc    __libc_calloc
 
 			#define public_fREe      __libc_free
 
 			#define public_cFREe     __libc_cfree
 
 			#define public_mALLOc    __libc_malloc
 
 			#define public_mEMALIGn  __libc_memalign
 
 			#define public_rEALLOc   __libc_realloc
 
 			#define public_vALLOc    __libc_valloc
 
 			#define public_pVALLOc   __libc_pvalloc
 
 			#define public_mALLINFo  __libc_mallinfo
 
 			#define public_mALLOPt   __libc_mallopt
 
 			#define public_mTRIm     __malloc_trim
 
 			#define public_mSTATs    __malloc_stats
 
 			#define public_mUSABLe   __malloc_usable_size
 
 			#define public_iCALLOc   __libc_independent_calloc
 
 			#define public_iCOMALLOc __libc_independent_comalloc
 
 			#define public_gET_STATe __malloc_get_state
 
 			#define public_sET_STATe __malloc_set_state
 
 			#define malloc_getpagesize __getpagesize()
 
 			#define open             __open
 
 			#define mmap             __mmap
 
 			#define munmap           __munmap
 
 			#define mremap           __mremap
 
 			#define mprotect         __mprotect
 
 			#define MORECORE (*__morecore)
 
 			#define MORECORE_FAILURE 0
 
 
 
 			Void_t * __default_morecore (ptrdiff_t);
 
 			Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
 
 
 
 			#else /* !_LIBC */
 
 			#define public_cALLOc    calloc
 
 			#define public_fREe      free
 
 			#define public_cFREe     cfree
 
 			#define public_mALLOc    malloc
 
 			#define public_mEMALIGn  memalign
 
 			#define public_rEALLOc   realloc
 
 			#define public_vALLOc    valloc
 
 			#define public_pVALLOc   pvalloc
 
 			#define public_mALLINFo  mallinfo
 
 			#define public_mALLOPt   mallopt
 
 			#define public_mTRIm     malloc_trim
 
 			#define public_mSTATs    malloc_stats
 
 			#define public_mUSABLe   malloc_usable_size
 
 			#define public_iCALLOc   independent_calloc
 
 			#define public_iCOMALLOc independent_comalloc
 
 			#define public_gET_STATe malloc_get_state
 
 			#define public_sET_STATe malloc_set_state
 
 			#endif /* _LIBC */
 
 			#endif /* USE_DL_PREFIX */
 
 
 
 			#ifndef _LIBC
 
 			#define __builtin_expect(expr, val) (expr)
 
 
 
 			#define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
 
 			#endif
 
 
 
 /*
 
 			  HAVE_MEMCPY should be defined if you are not otherwise using
 
 			  ANSI STD C, but still have memcpy and memset in your C library
 
 and want to use them in calloc and realloc. Otherwise simple
 
 			  macro versions are defined below.
 
 
 
 			  USE_MEMCPY should be defined as 1 if you actually want to
 
 			  have memset and memcpy called. People report that the macro
 
 			  versions are faster than libc versions on some systems.
 
 
 
 			  Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
 
 (of <= 36 bytes) are manually unrolled in realloc and calloc.
 
 */
 
 
 
 			#define HAVE_MEMCPY
 
 
 
 			#ifndef USE_MEMCPY
 
 			#ifdef HAVE_MEMCPY
 
 			#define USE_MEMCPY 1
 
 			#else
 
 			#define USE_MEMCPY 0
 
 			#endif
 
 			#endif
 
 
 
 
 
 			#if (__STD_C || defined(HAVE_MEMCPY))
 
 
 
 			#ifdef _LIBC
 
 			# include <string.h>
 
 			#else
 
 			#ifdef WIN32
 
 /* On Win32 memset and memcpy are already declared in windows.h */
 
 			#else
 
 			#if __STD_C
 
 			void* memset(void*, int, size_t);
 
 			void* memcpy(void*, const void*, size_t);
 
 			#else
 
 			Void_t* memset();
 
 			Void_t* memcpy();
 
 			#endif
 
 			#endif
 
 			#endif
 
 			#endif
 
 
 
 
 
 /* Force a value to be in a register and stop the compiler referring
 
 to the source (mostly memory location) again. */
 
 			#define force_reg(val) 
 
 ({ __typeof (val) _v; asm ("" : "=r" (_v) : "0" (val)); _v; })
 
 
 
 
 
 /*
 
 			  MALLOC_FAILURE_ACTION is the action to take before "return 0" when
 
 			  malloc fails to be able to return memory, either because memory is
 
 			  exhausted or because of illegal arguments.
 
 
 
 			  By default, sets errno if running on STD_C platform, else does nothing.
 
 */
 
 
 
 			#ifndef MALLOC_FAILURE_ACTION
 
 			#if __STD_C
 
 			#define MALLOC_FAILURE_ACTION 
 
 			   errno = ENOMEM;
 
 
 
 			#else
 
 			#define MALLOC_FAILURE_ACTION
 
 			#endif
 
 			#endif
 
 
 
 /*
 
 			  MORECORE-related declarations. By default, rely on sbrk
 
 */
 
 
 
 
 
 			#ifdef LACKS_UNISTD_H
 
 			#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
 
 			#if __STD_C
 
 			extern Void_t* sbrk(ptrdiff_t);
 
 			#else
 
 			extern Void_t* sbrk();
 
 			#endif
 
 			#endif
 
 			#endif
 
 
 
 /*
 
 			  MORECORE is the name of the routine to call to obtain more memory
 
 			  from the system. See below for general guidance on writing
 
 			  alternative MORECORE functions, as well as a version for WIN32 and a
 
 			  sample version for pre-OSX macos.
 
 */
 
 
 
 			#ifndef MORECORE
 
 			#define MORECORE sbrk
 
 			#endif
 
 
 
 /*
 
 			  MORECORE_FAILURE is the value returned upon failure of MORECORE
 
 			  as well as mmap. Since it cannot be an otherwise valid memory address,
 
 and must reflect values of standard sys calls, you probably ought not
 
 			  try to redefine it.
 
 */
 
 
 
 			#ifndef MORECORE_FAILURE
 
 			#define MORECORE_FAILURE (-1)
 
 			#endif
 
 
 
 /*
 
 If MORECORE_CONTIGUOUS is true, take advantage of fact that
 
 			  consecutive calls to MORECORE with positive arguments always return
 
 			  contiguous increasing addresses. This is true of unix sbrk. Even
 
 if not defined, when regions happen to be contiguous, malloc will
 
 			  permit allocations spanning regions obtained from different
 
 			  calls. But defining this when applicable enables some stronger
 
 			  consistency checks and space efficiencies.
 
 */
 
 
 
 			#ifndef MORECORE_CONTIGUOUS
 
 			#define MORECORE_CONTIGUOUS 1
 
 			#endif
 
 
 
 /*
 
 			  Define MORECORE_CANNOT_TRIM if your version of MORECORE
 
 			  cannot release space back to the system when given negative
 
 			  arguments. This is generally necessary only if you are using
 
 			  a hand-crafted MORECORE function that cannot handle negative arguments.
 
 */
 
 
 
 /* #define MORECORE_CANNOT_TRIM */
 
 
 
 /* MORECORE_CLEARS (default 1)
 
 			     The degree to which the routine mapped to MORECORE zeroes out
 
 			     memory: never (0), only for newly allocated space (1) or always
 
 (2). The distinction between (1) and (2) is necessary because on
 
 			     some systems, if the application first decrements and then
 
 			     increments the break value, the contents of the reallocated space
 
 			     are unspecified.
 
 */
 
 
 
 			#ifndef MORECORE_CLEARS
 
 			#define MORECORE_CLEARS 1
 
 			#endif
 
 
 
 
 
 /*
 
 			  Define HAVE_MMAP as true to optionally make malloc() use mmap() to
 
 			  allocate very large blocks. These will be returned to the
 
 			  operating system immediately after a free(). Also, if mmap
 
 is available, it is used as a backup strategy in cases where
 
 			  MORECORE fails to provide space from system.
 
 
 
 			  This malloc is best tuned to work with mmap for large requests.
 
 If you do not have mmap, operations involving very large chunks (1MB
 
 or so) may be slower than you'd like.
 
 */
 
 
 
 			#ifndef HAVE_MMAP
 
 			#define HAVE_MMAP 1
 
 
 
 /*
 
 			   Standard unix mmap using /dev/zero clears memory so calloc doesn't
 
 			   need to.
 
 */
 
 
 
 			#ifndef MMAP_CLEARS
 
 			#define MMAP_CLEARS 1
 
 			#endif
 
 
 
 			#else /* no mmap */
 
 			#ifndef MMAP_CLEARS
 
 			#define MMAP_CLEARS 0
 
 			#endif
 
 			#endif
 
 
 
 
 
 /*
 
 			   MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
 
 			   sbrk fails, and mmap is used as a backup (which is done only if
 
 			   HAVE_MMAP). The value must be a multiple of page size. This
 
 			   backup strategy generally applies only when systems have "holes" in
 
 			   address space, so sbrk cannot perform contiguous expansion, but
 
 			   there is still space available on system. On systems for which
 
 			   this is known to be useful (i.e. most linux kernels), this occurs
 
 			   only when programs allocate huge amounts of memory. Between this,
 
 and the fact that mmap regions tend to be limited, the size should
 
 			   be large, to avoid too many mmap calls and thus avoid running out
 
 			   of kernel resources.
 
 */
 
 
 
 			#ifndef MMAP_AS_MORECORE_SIZE
 
 			#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
 
 			#endif
 
 
 
 /*
 
 			  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
 
 			  large blocks. This is currently only possible on Linux with
 
 			  kernel versions newer than 1.3.77.
 
 */
 
 
 
 			#ifndef HAVE_MREMAP
 
 			#ifdef linux
 
 			#define HAVE_MREMAP 1
 
 			#else
 
 			#define HAVE_MREMAP 0
 
 			#endif
 
 
 
 			#endif /* HAVE_MMAP */
 
 
 
 /* Define USE_ARENAS to enable support for multiple `arenas'. These
 
 			   are allocated using mmap(), are necessary for threads and
 
 			   occasionally useful to overcome address space limitations affecting
 
 			   sbrk(). */
 
 
 
 			#ifndef USE_ARENAS
 
 			#define USE_ARENAS HAVE_MMAP
 
 			#endif
 
 
 
 
 
 /*
 
 			  The system page size. To the extent possible, this malloc manages
 
 			  memory from the system in page-size units. Note that this value is
 
 			  cached during initialization into a field of malloc_state. So even
 
 if malloc_getpagesize is a function, it is only called once.
 
 
 
 			  The following mechanics for getpagesize were adapted from bsd/gnu
 
 			  getpagesize.h. If none of the system-probes here apply, a value of
 
 			  4096 is used, which should be OK: If they don't apply, then using
 
 			  the actual value probably doesn't impact performance.
 
 */
 
 
 
 
 
 			#ifndef malloc_getpagesize
 
 
 
 			#ifndef LACKS_UNISTD_H
 
 			#  include <unistd.h>
 
 			#endif
 
 
 
 			#  ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
 
 			#    ifndef _SC_PAGE_SIZE
 
 			#      define _SC_PAGE_SIZE _SC_PAGESIZE
 
 			#    endif
 
 			#  endif
 
 
 
 			#  ifdef _SC_PAGE_SIZE
 
 			#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
 
 			# else
 
 			# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
 
 			       extern size_t getpagesize();
 
 			#      define malloc_getpagesize getpagesize()
 
 			# else
 
 			#      ifdef WIN32 /* use supplied emulation of getpagesize */
 
 			#        define malloc_getpagesize getpagesize()
 
 			# else
 
 			#        ifndef LACKS_SYS_PARAM_H
 
 			#          include <sys/param.h>
 
 			#        endif
 
 			#        ifdef EXEC_PAGESIZE
 
 			#          define malloc_getpagesize EXEC_PAGESIZE
 
 			# else
 
 			#          ifdef NBPG
 
 			#            ifndef CLSIZE
 
 			#              define malloc_getpagesize NBPG
 
 			# else
 
 			#              define malloc_getpagesize (NBPG * CLSIZE)
 
 			#            endif
 
 			# else
 
 			#            ifdef NBPC
 
 			#              define malloc_getpagesize NBPC
 
 			# else
 
 			#              ifdef PAGESIZE
 
 			#                define malloc_getpagesize PAGESIZE
 
 			# else /* just guess */
 
 			#                define malloc_getpagesize (4096)
 
 			#              endif
 
 			#            endif
 
 			#          endif
 
 			#        endif
 
 			#      endif
 
 			#    endif
 
 			#  endif
 
 			#endif
 
 
 
 /*
 
 			  This version of malloc supports the standard SVID/XPG mallinfo
 
 			  routine that returns a struct containing usage properties and
 
 			  statistics. It should work on any SVID/XPG compliant system that has
 
 			  a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
 
 			  install such a thing yourself, cut out the preliminary declarations
 
 			  as described above and below and save them in a malloc.h file. But
 
 			  there's no compelling reason to bother to do this.)
 
 
 
 			  The main declaration needed is the mallinfo struct that is returned
 
 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
 
 			  bunch of fields that are not even meaningful in this version of
 
 			  malloc. These fields are are instead filled by mallinfo() with
 
 			  other numbers that might be of interest.
 
 
 
 			  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
 
 /usr/include/malloc.h file that includes a declaration of struct
 
 			  mallinfo. If so, it is included; else an SVID2/XPG2 compliant
 
 			  version is declared below. These must be precisely the same for
 
 			  mallinfo() to work. The original SVID version of this struct,
 
 			  defined on most systems with mallinfo, declares all fields as
 
 			  ints. But some others define as unsigned long. If your system
 
 			  defines the fields using a type of different width than listed here,
 
 			  you must #include your system version and #define
 
 			  HAVE_USR_INCLUDE_MALLOC_H.
 
 */
 
 
 
 /* #define HAVE_USR_INCLUDE_MALLOC_H */
 
 
 
 			#ifdef HAVE_USR_INCLUDE_MALLOC_H
 
 			#include "/usr/include/malloc.h"
 
 			#endif
 
 
 
 
 
 /* ---------- description of public routines ------------ */
 
 
 
 /*
 
 			  malloc(size_t n)
 
 			  Returns a pointer to a newly allocated chunk of at least n bytes, or null
 
 if no space is available. Additionally, on failure, errno is
 
 set to ENOMEM on ANSI C systems.
 
 
 
 If n is zero, malloc returns a minumum-sized chunk. (The minimum
 
 			  size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
 
 			  systems.) On most systems, size_t is an unsigned type, so calls
 
 			  with negative arguments are interpreted as requests for huge amounts
 
 			  of space, which will often fail. The maximum supported value of n
 
 			  differs across systems, but is in all cases less than the maximum
 
 			  representable value of a size_t.
 
 */
 
 			#if __STD_C
 
 			Void_t* public_mALLOc(size_t);
 
 			#else
 
 			Void_t* public_mALLOc();
 
 			#endif
 
 			#ifdef libc_hidden_proto
 
 			libc_hidden_proto (public_mALLOc)
 
 			#endif
 
 
 
 /*
 
 			  free(Void_t* p)
 
 			  Releases the chunk of memory pointed to by p, that had been previously
 
 			  allocated using malloc or a related routine such as realloc.
 
 			  It has no effect if p is null. It can have arbitrary (i.e., 
 
 			  effects if p has already been freed.
 
 
 
 			  Unless disabled (using mallopt), freeing very large spaces will
 
 			  when possible, automatically trigger operations that give
 
 			  back unused memory to the system, thus reducing program footprint.
 
 */
 
 			#if __STD_C
 
 			void     public_fREe(Void_t*);
 
 			#else
 
 			void     public_fREe();
 
 			#endif
 
 			#ifdef libc_hidden_proto
 
 			libc_hidden_proto (public_fREe)
 
 			#endif
 
 
 
 /*
 
 			  calloc(size_t n_elements, size_t element_size);
 
 			  Returns a pointer to n_elements * element_size bytes, with all locations
 
 set to zero.
 
 */
 
 			#if __STD_C
 
 			Void_t* public_cALLOc(size_t, size_t);
 
 			#else
 
 			Void_t* public_cALLOc();
 
 			#endif
 
 
 
 /*
 
 			  realloc(Void_t* p, size_t n)
 
 			  Returns a pointer to a chunk of size n that contains the same data
 
 			  as does chunk p up to the minimum of (n, p's size) bytes, or null
 
 if no space is available.
 
 
 
 			  The returned pointer may or may not be the same as p. The algorithm
 
 			  prefers extending p when possible, otherwise it employs the
 
 			  equivalent of a malloc-copy-free sequence.
 
 
 
 If p is null, realloc is equivalent to malloc.
 
 
 
 If space is not available, realloc returns null, errno is set (if on
 
 			  ANSI) and p is NOT freed.
 
 
 
 if n is for fewer bytes than already held by p, the newly unused
 
 space is lopped off and freed if possible. Unless the #define
 
 			  REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
 
 			  zero (re)allocates a minimum-sized chunk.
 
 
 
 			  Large chunks that were internally obtained via mmap will always
 
 			  be reallocated using malloc-copy-free sequences unless
 
 			  the system supports MREMAP (currently only linux).
 
 
 
 			  The old unix realloc convention of allowing the last-free'd chunk
 
 to be used as an argument to realloc is not supported.
 
 */
 
 			#if __STD_C
 
 			Void_t* public_rEALLOc(Void_t*, size_t);
 
 			#else
 
 			Void_t* public_rEALLOc();
 
 			#endif
 
 			#ifdef libc_hidden_proto
 
 			libc_hidden_proto (public_rEALLOc)
 
 			#endif
 
 
 
 /*
 
 			  memalign(size_t alignment, size_t n);
 
 			  Returns a pointer to a newly allocated chunk of n bytes, aligned
 
 in accord with the alignment argument.
 
 
 
 			  The alignment argument should be a power of two. If the argument is
 
 not a power of two, the nearest greater power is used.
 
 			  8-byte alignment is guaranteed by normal malloc calls, so don't
 
 			  bother calling memalign with an argument of 8 or less.
 
 
 
 			  Overreliance on memalign is a sure way to fragment space.
 
 */
 
 			#if __STD_C
 
 			Void_t* public_mEMALIGn(size_t, size_t);
 
 			#else
 
 			Void_t* public_mEMALIGn();
 
 			#endif
 
 			#ifdef libc_hidden_proto
 
 			libc_hidden_proto (public_mEMALIGn)
 
 			#endif
 
 
 
 /*
 
 			  valloc(size_t n);
 
 			  Equivalent to memalign(pagesize, n), where pagesize is the page
 
 			  size of the system. If the pagesize is unknown, 4096 is used.
 
 */
 
 			#if __STD_C
 
 			Void_t* public_vALLOc(size_t);
 
 			#else
 
 			Void_t* public_vALLOc();
 
 			#endif
 
 
 
 
 
 
 
 /*
 
 			  mallopt(int parameter_number, int parameter_value)
 
 			  Sets tunable parameters The format is to provide a
 
 (parameter-number, parameter-value) pair. mallopt then sets the
 
 			  corresponding parameter to the argument value if it can (i.e., so
 
 			  long as the value is meaningful), and returns 1 if successful else
 
 			  0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
 
 			  normally defined in malloc.h. Only one of these (M_MXFAST) is used
 
 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
 
 			  so setting them has no effect. But this malloc also supports four
 
 			  other options in mallopt. See below for details. Briefly, supported
 
 			  parameters are as follows (listed defaults are for "typical"
 
 			  configurations).
 
 
 
 			  Symbol            param #   default    allowed param values
 
 			  M_MXFAST          1         64         0-80 (0 disables fastbins)
 
 			  M_TRIM_THRESHOLD -1         128*1024   any (-1U disables trimming)
 
 			  M_TOP_PAD -2         0          any
 
 			  M_MMAP_THRESHOLD -3         128*1024   any (or 0 if no MMAP support)
 
 			  M_MMAP_MAX -4         65536      any (0 disables use of mmap)
 
 */
 
 			#if __STD_C
 
 int public_mALLOPt(int, int);
 
 			#else
 
 int public_mALLOPt();
 
 			#endif
 
 
 
 
 
 /*
 
 			  mallinfo()
 
 			  Returns (by copy) a struct containing various summary statistics:
 
 
 
 			  arena: current total non-mmapped bytes allocated from system
 
 			  ordblks: the number of free chunks
 
 			  smblks: the number of fastbin blocks (i.e., small chunks that
 
 			           have been freed but not use resused or consolidated)
 
 			  hblks: current number of mmapped regions
 
 			  hblkhd: total bytes held in mmapped regions
 
 			  usmblks: the maximum total allocated space. This will be greater
 
 			        than current total if trimming has occurred.
 
 			  fsmblks: total bytes held in fastbin blocks
 
 			  uordblks: current total allocated space (normal or mmapped)
 
 			  fordblks: total free space
 
 			  keepcost: the maximum number of bytes that could ideally be released
 
 			           back to system via malloc_trim. ("ideally" means that
 
 			           it ignores page restrictions etc.)
 
 
 
 			  Because these fields are ints, but internal bookkeeping may
 
 			  be kept as longs, the reported values may wrap around zero and
 
 			  thus be inaccurate.
 
 */
 
 			#if __STD_C
 
 			struct mallinfo public_mALLINFo(void);
 
 			#else
 
 			struct mallinfo public_mALLINFo();
 
 			#endif
 
 
 
 			#ifndef _LIBC
 
 /*
 
 			  independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
 
 
 
 			  independent_calloc is similar to calloc, but instead of returning a
 
 			  single cleared space, it returns an array of pointers to n_elements
 
 			  independent elements that can hold contents of size elem_size, each
 
 			  of which starts out cleared, and can be independently freed,
 
 			  realloc'ed etc. The elements are guaranteed to be adjacently
 
 			  allocated (this is not guaranteed to occur with multiple callocs or
 
 			  mallocs), which may also improve cache locality in some
 
 			  applications.
 
 
 
 			  The "chunks" argument is optional (i.e., may be null, which is
 
 			  probably the most typical usage). If it is null, the returned array
 
 is itself dynamically allocated and should also be freed when it is
 
 			  no longer needed. Otherwise, the chunks array must be of at least
 
 			  n_elements in length. It is filled in with the pointers to the
 
 			  chunks.
 
 
 
 In either case, independent_calloc returns this pointer array, or
 
 null if the allocation failed. If n_elements is zero and "chunks"
 
 is null, it returns a chunk representing an array with zero elements
 
 (which should be freed if not wanted).
 
 
 
 Each element must be individually freed when it is no longer
 
 			  needed. If you'd like to instead be able to free all at once, you
 
 			  should instead use regular calloc and assign pointers into this
 
 space to represent elements. (In this case though, you cannot
 
 			  independently free elements.)
 
 
 
 			  independent_calloc simplifies and speeds up implementations of many
 
 			  kinds of pools. It may also be useful when constructing large data
 
 			  structures that initially have a fixed number of fixed-sized nodes,
 
 			  but the number is not known at compile time, and some of the nodes
 
 			  may later need to be freed. For example:
 
 
 
 			  struct Node { int item; struct Node* next; };
 
 
 
 			  struct Node* build_list() {
 
 			    struct Node** pool;
 
 int n = read_number_of_nodes_needed();
 
 if (n <= 0) return 0;
 
 			    pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
 
 if (pool == 0) die();
 
 // organize into a linked list...
 
 			    struct Node* first = pool[0];
 
 for (i = 0; i < n-1;   i)
 
 			      pool[i]->next = pool[i 1];
 
 			    free(pool); // Can now free the array (or not, if it is needed later)
 
 			    return first;
 
 }
 
 */
 
 			#if __STD_C
 
 			Void_t** public_iCALLOc(size_t, size_t, Void_t**);
 
 			#else
 
 			Void_t** public_iCALLOc();
 
 			#endif
 
 
 
 /*
 
 			  independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
 
 
 
 			  independent_comalloc allocates, all at once, a set of n_elements
 
 			  chunks with sizes indicated in the "sizes" array. It returns
 
 			  an array of pointers to these elements, each of which can be
 
 			  independently freed, realloc'ed etc. The elements are guaranteed to
 
 			  be adjacently allocated (this is not guaranteed to occur with
 
 			  multiple callocs or mallocs), which may also improve cache locality
 
 in some applications.
 
 
 
 			  The "chunks" argument is optional (i.e., may be null). If it is null
 
 			  the returned array is itself dynamically allocated and should also
 
 			  be freed when it is no longer needed. Otherwise, the chunks array
 
 			  must be of at least n_elements in length. It is filled in with the
 
 			  pointers to the chunks.
 
 
 
 In either case, independent_comalloc returns this pointer array, or
 
 null if the allocation failed. If n_elements is zero and chunks is
 
 null, it returns a chunk representing an array with zero elements
 
 (which should be freed if not wanted).
 
 
 
 Each element must be individually freed when it is no longer
 
 			  needed. If you'd like to instead be able to free all at once, you
 
 			  should instead use a single regular malloc, and assign pointers at
 
 			  particular offsets in the aggregate space. (In this case though, you
 
 			  cannot independently free elements.)
 
 
 
 			  independent_comallac differs from independent_calloc in that each
 
 element may have a different size, and also that it does not
 
 			  automatically clear elements.
 
 
 
 			  independent_comalloc can be used to speed up allocation in cases
 
 			  where several structs or objects must always be allocated at the
 
 			  same time. For example:
 
 
 
 			  struct Head { ... }
 
 			  struct Foot { ... }
 
 
 
 			  void send_message(char* msg) {
 
 int msglen = strlen(msg);
 
 			    size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
 
 			    void* chunks[3];
 
 if (independent_comalloc(3, sizes, chunks) == 0)
 
 			      die();
 
 			    struct Head* head = (struct Head*)(chunks[0]);
 
 			    char* body = (char*)(chunks[1]);
 
 			    struct Foot* foot = (struct Foot*)(chunks[2]);
 
 // ...
 
 }
 
 
 
 In general though, independent_comalloc is worth using only for
 
 			  larger values of n_elements. For small values, you probably won't
 
 			  detect enough difference from series of malloc calls to bother.
 
 
 
 			  Overuse of independent_comalloc can increase overall memory usage,
 
 			  since it cannot reuse existing noncontiguous small chunks that
 
 			  might be available for some of the elements.
 
 */
 
 			#if __STD_C
 
 			Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
 
 			#else
 
 			Void_t** public_iCOMALLOc();
 
 			#endif
 
 
 
 			#endif /* _LIBC */
 
 
 
 
 
 /*
 
 			  pvalloc(size_t n);
 
 			  Equivalent to valloc(minimum-page-that-holds(n)), that is,
 
 round up n to nearest pagesize.
 
 */
 
 			#if __STD_C
 
 			Void_t* public_pVALLOc(size_t);
 
 			#else
 
 			Void_t* public_pVALLOc();
 
 			#endif
 
 
 
 /*
 
 			  cfree(Void_t* p);
 
 			  Equivalent to free(p).
 
 
 
 			  cfree is needed/defined on some systems that pair it with calloc,
 
 for odd historical reasons (such as: cfree is used in example
 
 			  code in the first edition of K&R).
 
 */
 
 			#if __STD_C
 
 			void     public_cFREe(Void_t*);
 
 			#else
 
 			void     public_cFREe();
 
 			#endif
 
 
 
 /*
 
 			  malloc_trim(size_t pad);
 
 
 
 If possible, gives memory back to the system (via negative
 
 			  arguments to sbrk) if there is unused memory at the `high' end of
 
 			  the malloc pool. You can call this after freeing large blocks of
 
 			  memory to potentially reduce the system-level memory requirements
 
 			  of a program. However, it cannot guarantee to reduce memory. Under
 
 			  some allocation patterns, some large free blocks of memory will be
 
 			  locked between two used chunks, so they cannot be given back to
 
 			  the system.
 
 
 
 			  The `pad' argument to malloc_trim represents the amount of free
 
 			  trailing space to leave untrimmed. If this argument is zero,
 
 			  only the minimum amount of memory to maintain internal data
 
 			  structures will be left (one page or less). Non-zero arguments
 
 			  can be supplied to maintain enough trailing space to service
 
 			  future expected allocations without having to re-obtain memory
 
 			  from the system.
 
 
 
 			  Malloc_trim returns 1 if it actually released any memory, else 0.
 
 On systems that do not support "negative sbrks", it will always
 
 			  return 0.
 
 */
 
 			#if __STD_C
 
 int public_mTRIm(size_t);
 
 			#else
 
 int public_mTRIm();
 
 			#endif
 
 
 
 /*
 
 			  malloc_usable_size(Void_t* p);
 
 
 
 			  Returns the number of bytes you can actually use in
 
 			  an allocated chunk, which may be more than you requested (although
 
 			  often not) due to alignment and minimum size constraints.
 
 			  You can use this many bytes without worrying about
 
 			  overwriting other allocated objects. This is not a particularly great
 
 			  programming practice. malloc_usable_size can be more useful in
 
 			  debugging and assertions, for example:
 
 
 
 			  p = malloc(n);
 
 			  assert(malloc_usable_size(p) >= 256);
 
 
 
 */
 
 			#if __STD_C
 
 			size_t   public_mUSABLe(Void_t*);
 
 			#else
 
 			size_t   public_mUSABLe();
 
 			#endif
 
 
 
 /*
 
 			  malloc_stats();
 
 			  Prints on stderr the amount of space obtained from the system (both
 
 			  via sbrk and mmap), the maximum amount (which may be more than
 
 			  current if malloc_trim and/or munmap got called), and the current
 
 			  number of bytes allocated via malloc (or realloc, etc) but not yet
 
 			  freed. Note that this is the number of bytes allocated, not the
 
 			  number requested. It will be larger than the number requested
 
 			  because of alignment and bookkeeping overhead. Because it includes
 
 			  alignment wastage as being in use, this figure may be greater than
 
 			  zero even when no user-level chunks are allocated.
 
 
 
 			  The reported current and maximum system memory can be inaccurate if
 
 			  a program makes other calls to system memory allocation functions
 
 (normally sbrk) outside of malloc.
 
 
 
 			  malloc_stats prints only the most commonly interesting statistics.
 
 			  More information can be obtained by calling mallinfo.
 
 
 
 */
 
 			#if __STD_C
 
 			void     public_mSTATs(void);
 
 			#else
 
 			void     public_mSTATs();
 
 			#endif
 
 
 
 /*
 
 			  malloc_get_state(void);
 
 
 
 			  Returns the state of all malloc variables in an opaque data
 
 			  structure.
 
 */
 
 			#if __STD_C
 
 			Void_t* public_gET_STATe(void);
 
 			#else
 
 			Void_t* public_gET_STATe();
 
 			#endif
 
 
 
 /*
 
 			  malloc_set_state(Void_t* state);
 
 
 
 			  Restore the state of all malloc variables from data obtained with
 
 			  malloc_get_state().
 
 */
 
 			#if __STD_C
 
 int public_sET_STATe(Void_t*);
 
 			#else
 
 int public_sET_STATe();
 
 			#endif
 
 
 
 			#ifdef _LIBC
 
 /*
 
 			  posix_memalign(void **memptr, size_t alignment, size_t size);
 
 
 
 			  POSIX wrapper like memalign(), checking for validity of size.
 
 */
 
 int __posix_memalign(void **, size_t, size_t);
 
 			#endif
 
 
 
 /* mallopt tuning options */
 
 
 
 /*
 
 			  M_MXFAST is the maximum request size used for "fastbins", special bins
 
 			  that hold returned chunks without consolidating their spaces. This
 
 			  enables future requests for chunks of the same size to be handled
 
 			  very quickly, but can increase fragmentation, and thus increase the
 
 			  overall memory footprint of a program.
 
 
 
 			  This malloc manages fastbins very conservatively yet still
 
 			  efficiently, so fragmentation is rarely a problem for values less
 
 			  than or equal to the default. The maximum supported value of MXFAST
 
 is 80. You wouldn't want it any higher than this anyway. Fastbins
 
 			  are designed especially for use with many small structs, objects or
 
 			  strings -- the default handles structs/objects/arrays with sizes up
 
 to 8 4byte fields, or small strings representing words, tokens,
 
 			  etc. Using fastbins for larger objects normally worsens
 
 			  fragmentation without improving speed.
 
 
 
 			  M_MXFAST is set in REQUEST size units. It is internally used in
 
 			  chunksize units, which adds padding and alignment. You can reduce
 
 			  M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
 
 			  algorithm to be a closer approximation of fifo-best-fit in all cases,
 
 not just for larger requests, but will generally cause it to be
 
 			  slower.
 
 */
 
 
 
 
 
 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
 
 			#ifndef M_MXFAST
 
 			#define M_MXFAST            1
 
 			#endif
 
 
 
 			#ifndef DEFAULT_MXFAST
 
 			#define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
 
 			#endif
 
 
 
 
 
 /*
 
 			  M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
 
 to keep before releasing via malloc_trim in free().
 
 
 
 			  Automatic trimming is mainly useful in long-lived programs.
 
 			  Because trimming via sbrk can be slow on some systems, and can
 
 			  sometimes be wasteful (in cases where programs immediately
 
 			  afterward allocate more large chunks) the value should be high
 
 			  enough so that your overall system performance would improve by
 
 			  releasing this much memory.
 
 
 
 			  The trim threshold and the mmap control parameters (see below)
 
 			  can be traded off with one another. Trimming and mmapping are
 
 			  two different ways of releasing unused memory back to the
 
 			  system. Between these two, it is often possible to keep
 
 			  system-level demands of a long-lived program down to a bare
 
 			  minimum. For example, in one test suite of sessions measuring
 
 			  the XF86 X server on Linux, using a trim threshold of 128K and a
 
 			  mmap threshold of 192K led to near-minimal long term resource
 
 			  consumption.
 
 
 
 If you are using this malloc in a long-lived program, it should
 
 			  pay to experiment with these values. As a rough guide, you
 
 			  might set to a value close to the average size of a process
 
 (program) running on your system. Releasing this much memory
 
 			  would allow such a process to run in memory. Generally, it's
 
 			  worth it to tune for trimming rather tham memory mapping when a
 
 			  program undergoes phases where several large chunks are
 
 			  allocated and released in ways that can reuse each other's
 
 			  storage, perhaps mixed with phases where there are no such
 
 			  chunks at all. And in well-behaved long-lived programs,
 
 			  controlling release of large blocks via trimming versus mapping
 
 is usually faster.
 
 
 
 			  However, in most programs, these parameters serve mainly as
 
 			  protection against the system-level effects of carrying around
 
 			  massive amounts of unneeded memory. Since frequent calls to
 
 			  sbrk, mmap, and munmap otherwise degrade performance, the default
 
 			  parameters are set to relatively high values that serve only as
 
 			  safeguards.
 
 
 
 			  The trim value It must be greater than page size to have any useful
 
 			  effect. To disable trimming completely, you can set to
 
 (unsigned long)(-1)
 
 
 
 Trim settings interact with fastbin (MXFAST) settings: Unless
 
 			  TRIM_FASTBINS is defined, automatic trimming never takes place upon
 
 			  freeing a chunk with size less than or equal to MXFAST. Trimming is
 
 			  instead delayed until subsequent freeing of larger chunks. However,
 
 			  you can still force an attempted trim by calling malloc_trim.
 
 
 
 			  Also, trimming is not generally possible in cases where
 
 			  the main arena is obtained via mmap.
 
 
 
 			  Note that the trick some people use of mallocing a huge space and
 
 then freeing it at program startup, in an attempt to reserve system
 
 			  memory, doesn't have the intended effect under automatic trimming,
 
 			  since that memory will immediately be returned to the system.
 
 */
 
 
 
 			#define M_TRIM_THRESHOLD -1
 
 
 
 			#ifndef DEFAULT_TRIM_THRESHOLD
 
 			#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
 
 			#endif
 
 
 
 /*
 
 			  M_TOP_PAD is the amount of extra `padding' space to allocate or
 
 			  retain whenever sbrk is called. It is used in two ways internally:
 
 
 
 * When sbrk is called to extend the top of the arena to satisfy
 
 			  a new malloc request, this much padding is added to the sbrk
 
 			  request.
 
 
 
 * When malloc_trim is called automatically from free(),
 
 			  it is used as the `pad' argument.
 
 
 
 In both cases, the actual amount of padding is rounded
 
 			  so that the end of the arena is always a system page boundary.
 
 
 
 			  The main reason for using padding is to avoid calling sbrk so
 
 			  often. Having even a small pad greatly reduces the likelihood
 
 			  that nearly every malloc request during program start-up (or
 
 			  after trimming) will invoke sbrk, which needlessly wastes
 
 time.
 
 
 
 			  Automatic rounding-up to page-size units is normally sufficient
 
 to avoid measurable overhead, so the default is 0. However, in
 
 			  systems where sbrk is relatively slow, it can pay to increase
 
 			  this value, at the expense of carrying around more memory than
 
 			  the program needs.
 
 */
 
 
 
 			#define M_TOP_PAD -2
 
 
 
 			#ifndef DEFAULT_TOP_PAD
 
 			#define DEFAULT_TOP_PAD (0)
 
 			#endif
 
 
 
 /*
 
 			  MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
 
 			  adjusted MMAP_THRESHOLD.
 
 */
 
 
 
 			#ifndef DEFAULT_MMAP_THRESHOLD_MIN
 
 			#define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
 
 			#endif
 
 
 
 			#ifndef DEFAULT_MMAP_THRESHOLD_MAX
 
 /* For 32-bit platforms we cannot increase the maximum mmap
 
 			     threshold much because it is also the minimum value for the
 
 			     maximum heap size and its alignment. Going above 512k (i.e., 1M
 
 for new heaps) wastes too much address space. */
 
 			# if __WORDSIZE == 32
 
 			#  define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
 
 			# else
 
 			#  define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
 
 			# endif
 
 			#endif
 
 
 
 /*
 
 			  M_MMAP_THRESHOLD is the request size threshold for using mmap()
 
 to service a request. Requests of at least this size that cannot
 
 			  be allocated using already-existing space will be serviced via mmap.
 
 (If enough normal freed space already exists it is used instead.)
 
 
 
 			  Using mmap segregates relatively large chunks of memory so that
 
 			  they can be individually obtained and released from the host
 
 			  system. A request serviced through mmap is never reused by any
 
 			  other request (at least not directly; the system may just so
 
 			  happen to remap successive requests to the same locations).
 
 
 
 			  Segregating space in this way has the benefits that:
 
 
 
 			   1. Mmapped space can ALWAYS be individually released back
 
 to the system, which helps keep the system level memory
 
 			      demands of a long-lived program low.
 
 			   2. Mapped memory can never become `locked' between
 
 			      other chunks, as can happen with normally allocated chunks, which
 
 			      means that even trimming via malloc_trim would not release them.
 
 			   3. On some systems with "holes" in address spaces, mmap can obtain
 
 			      memory that sbrk cannot.
 
 
 
 			  However, it has the disadvantages that:
 
 
 
 			   1. The space cannot be reclaimed, consolidated, and then
 
 			      used to service later requests, as happens with normal chunks.
 
 			   2. It can lead to more wastage because of mmap page alignment
 
 			      requirements
 
 			   3. It causes malloc performance to be more dependent on host
 
 			      system memory management support routines which may vary in
 
 			      implementation quality and may impose arbitrary
 
 			      limitations. Generally, servicing a request via normal
 
 			      malloc steps is faster than going through a system's mmap.
 
 
 
 			  The advantages of mmap nearly always outweigh disadvantages for
 
 "large" chunks, but the value of "large" varies across systems. The
 
 			  default is an empirically derived value that works well in most
 
 			  systems.
 
 
 
 
 
 			  Update in 2006:
 
 			  The above was written in 2001. Since then the world has changed a lot.
 
 			  Memory got bigger. Applications got bigger. The virtual address space
 
 			  layout in 32 bit linux changed.
 
 
 
 In the new situation, brk() and mmap space is shared and there are no
 
 			  artificial limits on brk size imposed by the kernel. What is more,
 
 			  applications have started using transient allocations larger than the
 
 			  128Kb as was imagined in 2001.
 
 
 
 			  The price for mmap is also high now; each time glibc mmaps from the
 
 			  kernel, the kernel is forced to zero out the memory it gives to the
 
 			  application. Zeroing memory is expensive and eats a lot of cache and
 
 			  memory bandwidth. This has nothing to do with the efficiency of the
 
 			  virtual memory system, by doing mmap the kernel just has no choice but
 
 to zero.
 
 
 
 In 2001, the kernel had a maximum size for brk() which was about 800
 
 			  megabytes on 32 bit x86, at that point brk() would hit the first
 
 			  mmaped shared libaries and couldn't expand anymore. With current 2.6
 
 			  kernels, the VA space layout is different and brk() and mmap
 
 			  both can span the entire heap at will.
 
 
 
 			  Rather than using a static threshold for the brk/mmap tradeoff,
 
 			  we are now using a simple dynamic one. The goal is still to avoid
 
 			  fragmentation. The old goals we kept are
 
 			  1) try to get the long lived large allocations to use mmap()
 
 			  2) really large allocations should always use mmap()
 
 and we're adding now:
 
 			  3) transient allocations should use brk() to avoid forcing the kernel
 
 			     having to zero memory over and over again
 
 
 
 			  The implementation works with a sliding threshold, which is by default
 
 			  limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
 
 			  out at 128Kb as per the 2001 default.
 
 
 
 			  This allows us to satisfy requirement 1) under the assumption that long
 
 			  lived allocations are made early in the process' lifespan, before it has
 
 			  started doing dynamic allocations of the same size (which will
 
 			  increase the threshold).
 
 
 
 			  The upperbound on the threshold satisfies requirement 2)
 
 
 
 			  The threshold goes up in value when the application frees memory that was
 
 			  allocated with the mmap allocator. The idea is that once the application
 
 			  starts freeing memory of a certain size, it's highly probable that this is
 
 			  a size the application uses for transient allocations. This estimator
 
 is there to satisfy the new third requirement.
 
 
 
 */
 
 
 
 			#define M_MMAP_THRESHOLD -3
 
 
 
 			#ifndef DEFAULT_MMAP_THRESHOLD
 
 			#define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
 
 			#endif
 
 
 
 /*
 
 			  M_MMAP_MAX is the maximum number of requests to simultaneously
 
 			  service using mmap. This parameter exists because
 
 			  some systems have a limited number of internal tables for
 
 			  use by mmap, and using more than a few of them may degrade
 
 			  performance.
 
 
 
 			  The default is set to a value that serves only as a safeguard.
 
 			  Setting to 0 disables use of mmap for servicing large requests. If
 
 			  HAVE_MMAP is not set, the default value is 0, and attempts to set it
 
 to non-zero values in mallopt will fail.
 
 */
 
 
 
 			#define M_MMAP_MAX -4
 
 
 
 			#ifndef DEFAULT_MMAP_MAX
 
 			#if HAVE_MMAP
 
 			#define DEFAULT_MMAP_MAX (65536)
 
 			#else
 
 			#define DEFAULT_MMAP_MAX (0)
 
 			#endif
 
 			#endif
 
 
 
 			#ifdef __cplusplus
 
 } /* end of extern "C" */
 
 			#endif
 
 
 
 			#include <malloc.h>
 
 
 
 			#ifndef BOUNDED_N
 
 			#define BOUNDED_N(ptr, sz) (ptr)
 
 			#endif
 
 			#ifndef RETURN_ADDRESS
 
 			#define RETURN_ADDRESS(X_) (NULL)
 
 			#endif
 
 
 
 /* On some platforms we can compile internal, not exported functions better.
 
 Let the environment provide a macro and define it to be empty if it
 
 is not available. */
 
 			#ifndef internal_function
 
 			# define internal_function
 
 			#endif
 
 
 
 /* Forward declarations. */
 
 			struct malloc_chunk;
 
 			typedef struct malloc_chunk* mchunkptr;
 
 
 
 /* Internal routines. */
 
 
 
 			#if __STD_C
 
 
 
 			static Void_t* _int_malloc(mstate, size_t);
 
 			#ifdef ATOMIC_FASTBINS
 
 			static void     _int_free(mstate, mchunkptr, int);
 
 			#else
 
 			static void     _int_free(mstate, mchunkptr);
 
 			#endif
 
 			static Void_t* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
 
 			                 INTERNAL_SIZE_T);
 
 			static Void_t* _int_memalign(mstate, size_t, size_t);
 
 			static Void_t* _int_valloc(mstate, size_t);
 
 			static Void_t* _int_pvalloc(mstate, size_t);
 
 /*static Void_t* cALLOc(size_t, size_t);*/
 
 			#ifndef _LIBC
 
 			static Void_t** _int_icalloc(mstate, size_t, size_t, Void_t**);
 
 			static Void_t** _int_icomalloc(mstate, size_t, size_t*, Void_t**);
 
 			#endif
 
 			static int mTRIm(mstate, size_t);
 
 			static size_t   mUSABLe(Void_t*);
 
 			static void     mSTATs(void);
 
 			static int mALLOPt(int, int);
 
 			static struct mallinfo mALLINFo(mstate);
 
 			static void malloc_printerr(int action, const char *str, void *ptr);
 
 
 
 			static Void_t* internal_function mem2mem_check(Void_t *p, size_t sz);
 
 			static int internal_function top_check(void);
 
 			static void internal_function munmap_chunk(mchunkptr p);
 
 			#if HAVE_MREMAP
 
 			static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
 
 			#endif
 
 
 
 			static Void_t* malloc_check(size_t sz, const Void_t *caller);
 
 			static void      free_check(Void_t* mem, const Void_t *caller);
 
 			static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
 
 const Void_t *caller);
 
 			static Void_t* memalign_check(size_t alignment, size_t bytes,
 
 const Void_t *caller);
 
 			#ifndef NO_THREADS
 
 			# ifdef _LIBC
 
 			# if USE___THREAD || !defined SHARED
 
 /* These routines are never needed in this configuration. */
 
 			#   define NO_STARTER
 
 			#  endif
 
 			# endif
 
 			# ifdef NO_STARTER
 
 			#  undef NO_STARTER
 
 			# else
 
 			static Void_t* malloc_starter(size_t sz, const Void_t *caller);
 
 			static Void_t* memalign_starter(size_t aln, size_t sz, const Void_t *caller);
 
 			static void      free_starter(Void_t* mem, const Void_t *caller);
 
 			# endif
 
 			static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
 
 			static void      free_atfork(Void_t* mem, const Void_t *caller);
 
 			#endif
 
 
 
 			#else
 
 
 
 			static Void_t* _int_malloc();
 
 			static void     _int_free();
 
 			static Void_t* _int_realloc();
 
 			static Void_t* _int_memalign();
 
 			static Void_t* _int_valloc();
 
 			static Void_t* _int_pvalloc();
 
 /*static Void_t* cALLOc();*/
 
 			static Void_t** _int_icalloc();
 
 			static Void_t** _int_icomalloc();
 
 			static int mTRIm();
 
 			static size_t   mUSABLe();
 
 			static void     mSTATs();
 
 			static int mALLOPt();
 
 			static struct mallinfo mALLINFo();
 
 
 
 			#endif
 
 
 
 
 
 
 
 
 
 /* ------------- Optional versions of memcopy ---------------- */
 
 
 
 
 
 			#if USE_MEMCPY
 
 
 
 /*
 
 			  Note: memcpy is ONLY invoked with non-overlapping regions,
 
 			  so the (usually slower) memmove is not needed.
 
 */
 
 
 
 			#define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
 
 			#define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
 
 
 
 			#else /* !USE_MEMCPY */
 
 
 
 /* Use Duff's device for good zeroing/copying performance. */
 
 
 
 			#define MALLOC_ZERO(charp, nbytes) 
 
 do { 
 
 			  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); 
 
 			  unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); 
 
 			  long mcn; 
 
 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } 
 
 			  switch (mctmp) { 
 
 case 0: for(;;) { *mzp   = 0; 
 
 case 7: *mzp   = 0; 
 
 case 6: *mzp   = 0; 
 
 case 5: *mzp   = 0; 
 
 case 4: *mzp   = 0; 
 
 case 3: *mzp   = 0; 
 
 case 2: *mzp   = 0; 
 
 case 1: *mzp   = 0; if(mcn <= 0) break; mcn--; } 
 
 } 
 
 } while(0)
 
 
 
 			#define MALLOC_COPY(dest,src,nbytes) 
 
 do { 
 
 			  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; 
 
 			  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; 
 
 			  unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); 
 
 			  long mcn; 
 
 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } 
 
 			  switch (mctmp) { 
 
 case 0: for(;;) { *mcdst   = *mcsrc  ; 
 
 case 7: *mcdst   = *mcsrc  ; 
 
 case 6: *mcdst   = *mcsrc  ; 
 
 case 5: *mcdst   = *mcsrc  ; 
 
 case 4: *mcdst   = *mcsrc  ; 
 
 case 3: *mcdst   = *mcsrc  ; 
 
 case 2: *mcdst   = *mcsrc  ; 
 
 case 1: *mcdst   = *mcsrc  ; if(mcn <= 0) break; mcn--; } 
 
 } 
 
 } while(0)
 
 
 
 			#endif
 
 
 
 /* ------------------ MMAP support ------------------ */
 
 
 
 
 
 			#if HAVE_MMAP
 
 
 
 			#include <fcntl.h>
 
 			#ifndef LACKS_SYS_MMAN_H
 
 			#include <sys/mman.h>
 
 			#endif
 
 
 
 			#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
 
 			# define MAP_ANONYMOUS MAP_ANON
 
 			#endif
 
 			#if !defined(MAP_FAILED)
 
 			# define MAP_FAILED ((char*)-1)
 
 			#endif
 
 
 
 			#ifndef MAP_NORESERVE
 
 			# ifdef MAP_AUTORESRV
 
 			#  define MAP_NORESERVE MAP_AUTORESRV
 
 			# else
 
 			#  define MAP_NORESERVE 0
 
 			# endif
 
 			#endif
 
 
 
 /*
 
 			   Nearly all versions of mmap support MAP_ANONYMOUS,
 
 			   so the following is unlikely to be needed, but is
 
 			   supplied just in case.
 
 */
 
 
 
 			#ifndef MAP_ANONYMOUS
 
 
 
 			static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
 
 
 
 			#define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? 
 
 (dev_zero_fd = open("/dev/zero", O_RDWR), 
 
 			  mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : 
 
 			   mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
 
 
 
 			#else
 
 
 
 			#define MMAP(addr, size, prot, flags) 
 
 (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
 
 
 
 			#endif
 
 
 
 
 
 			#endif /* HAVE_MMAP */
 
 
 
 
 
 /*
 
 ----------------------- Chunk representations -----------------------
 
 */
 
 
 
 
 
 /*
 
 			  This struct declaration is misleading (but accurate and necessary).
 
 			  It declares a "view" into memory allowing access to necessary
 
 			  fields at known offsets from a given base. See explanation below.
 
 */
 
 
 
 			struct malloc_chunk {
 
 
 
 			  INTERNAL_SIZE_T      prev_size; /* Size of previous chunk (if free). */
 
 			  INTERNAL_SIZE_T      size; /* Size in bytes, including overhead. */
 
 
 
 			  struct malloc_chunk* fd; /* double links -- used only if free. */
 
 			  struct malloc_chunk* bk;
 
 
 
 /* Only used for large blocks: pointer to next larger size. */
 
 			  struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
 
 			  struct malloc_chunk* bk_nextsize;
 
 };
 
 
 
 
 
 /*
 
 			   malloc_chunk details:
 
 
 
 (The following includes lightly edited explanations by Colin Plumb.)
 
 
 
 			    Chunks of memory are maintained using a `boundary tag' method as
 
 			    described in e.g., Knuth or Standish. (See the paper by Paul
 
 			    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
 
 			    survey of such techniques.) Sizes of free chunks are stored both
 
 in the front of each chunk and at the end. This makes
 
 			    consolidating fragmented chunks into bigger chunks very fast. The
 
 			    size fields also hold bits representing whether chunks are free or
 
 in use.
 
 
 
 			    An allocated chunk looks like this:
 
 
 
 
 
 			    chunk->  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | Size of previous chunk, if allocated | |
 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | Size of chunk, in bytes |M|P|
 
 			      mem->  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | User data starts here... .
 
 . .
 
 . (malloc_usable_size() bytes) .
 
 . |
 
 			nextchunk->  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | Size of chunk |
 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 
 
 
 
 			    Where "chunk" is the front of the chunk for the purpose of most of
 
 			    the malloc code, but "mem" is the pointer that is returned to the
 
 			    user. "Nextchunk" is the beginning of the next contiguous chunk.
 
 
 
 			    Chunks always begin on even word boundries, so the mem portion
 
 (which is returned to the user) is also on an even word boundary, and
 
 			    thus at least double-word aligned.
 
 
 
 			    Free chunks are stored in circular doubly-linked lists, and look like this:
 
 
 
 			    chunk->  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | Size of previous chunk |
 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 			    `head:' | Size of chunk, in bytes |P|
 
 			      mem->  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | Forward pointer to next chunk in list |
 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | Back pointer to previous chunk in list |
 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 | Unused space (may be 0 bytes long) .
 
 . .
 
 . |
 
 			nextchunk->  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 			    `foot:' | Size of chunk, in bytes |
 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 
 
 			    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
 
 			    chunk size (which is always a multiple of two words), is an in-use
 
 			    bit for the *previous* chunk. If that bit is *clear*, then the
 
 			    word before the current chunk size contains the previous chunk
 
 			    size, and can be used to find the front of the previous chunk.
 
 			    The very first chunk allocated always has this bit set,
 
 			    preventing access to non-existent (or non-owned) memory. If
 
 			    prev_inuse is set for any given chunk, then you CANNOT determine
 
 			    the size of the previous chunk, and might even get a memory
 
 			    addressing fault when trying to do so.
 
 
 
 			    Note that the `foot' of the current chunk is actually represented
 
 			    as the prev_size of the NEXT chunk. This makes it easier to
 
 			    deal with alignments etc but can be very confusing when trying
 
 to extend or adapt this code.
 
 
 
 			    The two exceptions to all this are
 
 
 
 			     1. The special chunk `top' doesn't bother using the
 
 			    trailing size field since there is no next contiguous chunk
 
 			    that would have to index off it. After initialization, `top'
 
 is forced to always exist. If it would become less than
 
 			    MINSIZE bytes long, it is replenished.
 
 
 
 			     2. Chunks allocated via mmap, which have the second-lowest-order
 
 			    bit M (IS_MMAPPED) set in their size fields. Because they are
 
 			    allocated one-by-one, each must contain its own trailing size field.
 
 
 
 */
 
 
 
 /*
 
 ---------- Size and alignment checks and conversions ----------
 
 */
 
 
 
 /* conversion from malloc headers to user pointers, and back */
 
 
 
 			#define chunk2mem(p) ((Void_t*)((char*)(p)   2*SIZE_SZ))
 
 			#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
 
 
 
 /* The smallest possible chunk */
 
 			#define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
 
 
 
 /* The smallest size we can malloc is an aligned minimal chunk */
 
 
 
 			#define MINSIZE 
 
 (unsigned long)(((MIN_CHUNK_SIZE MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
 
 
 
 /* Check if m has acceptable alignment */
 
 
 
 			#define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
 
 
 
 			#define misaligned_chunk(p) 
 
 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) 
 
 & MALLOC_ALIGN_MASK)
 
 
 
 
 
 /*
 
 			   Check if a request is so large that it would wrap around zero when
 
 			   padded and aligned. To simplify some other code, the bound is made
 
 			   low enough so that adding MINSIZE will also not wrap around zero.
 
 */
 
 
 
 			#define REQUEST_OUT_OF_RANGE(req) 
 
 ((unsigned long)(req) >= 
 
 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
 
 
 
 /* pad request bytes into a usable size -- internal version */
 
 
 
 			#define request2size(req) 
 
 (((req)   SIZE_SZ   MALLOC_ALIGN_MASK < MINSIZE) ? 
 
 			   MINSIZE : 
 
 ((req)   SIZE_SZ   MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
 
 
 
 /* Same, except also perform argument check */
 
 
 
 			#define checked_request2size(req, sz) 
 
 if (REQUEST_OUT_OF_RANGE(req)) { 
 
 			    MALLOC_FAILURE_ACTION; 
 
 			    return 0; 
 
 } 
 
 (sz) = request2size(req);
 
 
 
 /*
 
 --------------- Physical chunk operations ---------------
 
 */
 
 
 
 
 
 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
 
 			#define PREV_INUSE 0x1
 
 
 
 /* extract inuse bit of previous chunk */
 
 			#define prev_inuse(p) ((p)->size & PREV_INUSE)
 
 
 
 
 
 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
 
 			#define IS_MMAPPED 0x2
 
 
 
 /* check for mmap()'ed chunk */
 
 			#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
 
 
 
 
 
 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
 
 			   from a non-main arena. This is only set immediately before handing
 
 			   the chunk to the user, if necessary. */
 
 			#define NON_MAIN_ARENA 0x4
 
 
 
 /* check for chunk from non-main arena */
 
 			#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
 
 
 
 
 
 /*
 
 			  Bits to mask off when extracting size
 
 
 
 			  Note: IS_MMAPPED is intentionally not masked off from size field in
 
 			  macros for which mmapped chunks should never be seen. This should
 
 			  cause helpful core dumps to occur if it is tried by accident by
 
 			  people extending or adapting this malloc.
 
 */
 
 			#define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
 
 
 
 /* Get size, ignoring use bits */
 
 			#define chunksize(p) ((p)->size & ~(SIZE_BITS))
 
 
 
 
 
 /* Ptr to next physical malloc_chunk. */
 
 			#define next_chunk(p) ((mchunkptr)( ((char*)(p))   ((p)->size & ~SIZE_BITS) ))
 
 
 
 /* Ptr to previous physical malloc_chunk */
 
 			#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
 
 
 
 /* Treat space at ptr   offset as a chunk */
 
 			#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p))   (s)))
 
 
 
 /* extract p's inuse bit */
 
 			#define inuse(p)
 
 ((((mchunkptr)(((char*)(p)) ((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
 
 
 
 /* set/clear chunk as being inuse without otherwise disturbing */
 
 			#define set_inuse(p)
 
 ((mchunkptr)(((char*)(p))   ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
 
 
 
 			#define clear_inuse(p)
 
 ((mchunkptr)(((char*)(p))   ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
 
 
 
 
 
 /* check/set/clear inuse bits in known places */
 
 			#define inuse_bit_at_offset(p, s)
 
 (((mchunkptr)(((char*)(p))   (s)))->size & PREV_INUSE)
 
 
 
 			#define set_inuse_bit_at_offset(p, s)
 
 (((mchunkptr)(((char*)(p))   (s)))->size |= PREV_INUSE)
 
 
 
 			#define clear_inuse_bit_at_offset(p, s)
 
 (((mchunkptr)(((char*)(p))   (s)))->size &= ~(PREV_INUSE))
 
 
 
 
 
 /* Set size at head, without disturbing its use bit */
 
 			#define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
 
 
 
 /* Set size/use field */
 
 			#define set_head(p, s) ((p)->size = (s))
 
 
 
 /* Set size at footer (only when chunk is not in use) */
 
 			#define set_foot(p, s) (((mchunkptr)((char*)(p)   (s)))->prev_size = (s))
 
 
 
 
 
 /*
 
 -------------------- Internal data structures --------------------
 
 
 
 			   All internal state is held in an instance of malloc_state defined
 
 			   below. There are no other static variables, except in two optional
 
 			   cases:
 
 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
 
 * If HAVE_MMAP is true, but mmap doesn't support
 
 			     MAP_ANONYMOUS, a dummy file descriptor for mmap.
 
 
 
 			   Beware of lots of tricks that minimize the total bookkeeping space
 
 			   requirements. The result is a little over 1K bytes (for 4byte
 
 			   pointers and size_t.)
 
 */
 
 
 
 /*
 
 			  Bins
 
 
 
 			    An array of bin headers for free chunks. Each bin is doubly
 
 			    linked. The bins are approximately proportionally (log) spaced.
 
 			    There are a lot of these bins (128). This may look excessive, but
 
 			    works very well in practice. Most bins hold sizes that are
 
 			    unusual as malloc request sizes, but are more usual for fragments
 
 and consolidated sets of chunks, which is what these bins hold, so
 
 			    they can be found quickly. All procedures maintain the invariant
 
 			    that no consolidated chunk physically borders another one, so each
 
 			    chunk in a list is known to be preceeded and followed by either
 
 			    inuse chunks or the ends of memory.
 
 
 
 			    Chunks in bins are kept in size order, with ties going to the
 
 			    approximately least recently used chunk. Ordering isn't needed
 
 for the small bins, which all contain the same-sized chunks, but
 
 			    facilitates best-fit allocation for larger chunks. These lists
 
 			    are just sequential. Keeping them in order almost never requires
 
 			    enough traversal to warrant using fancier ordered data
 
 			    structures.
 
 
 
 			    Chunks of the same size are linked with the most
 
 			    recently freed at the front, and allocations are taken from the
 
 			    back. This results in LRU (FIFO) allocation order, which tends
 
 to give each chunk an equal opportunity to be consolidated with
 
 			    adjacent freed chunks, resulting in larger free chunks and less
 
 			    fragmentation.
 
 
 
 To simplify use in double-linked lists, each bin header acts
 
 			    as a malloc_chunk. This avoids special-casing for headers.
 
 			    But to conserve space and improve locality, we allocate
 
 			    only the fd/bk pointers of bins, and then use repositioning tricks
 
 to treat these as the fields of a malloc_chunk*.
 
 */
 
 
 
 			typedef struct malloc_chunk* mbinptr;
 
 
 
 /* addressing -- note that bin_at(0) does not exist */
 
 			#define bin_at(m, i) 
 
 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) 
 
 - offsetof (struct malloc_chunk, fd))
 
 
 
 /* analog of   bin */
 
 			#define next_bin(b) ((mbinptr)((char*)(b)   (sizeof(mchunkptr)<<1)))
 
 
 
 /* Reminders about list directionality within bins */
 
 			#define first(b) ((b)->fd)
 
 			#define last(b) ((b)->bk)
 
 
 
 /* Take a chunk off a bin list */
 
 			#define unlink(P, BK, FD) { 
 
 			  FD = P->fd; 
 
 			  BK = P->bk; 
 
 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) 
 
 			    malloc_printerr (check_action, "corrupted double-linked list", P); 
 
 else { 
 
 			    FD->bk = BK; 
 
 			    BK->fd = FD; 
 
 if (!in_smallbin_range (P->size) 
 
 && __builtin_expect (P->fd_nextsize != NULL, 0)) { 
 
 			      assert (P->fd_nextsize->bk_nextsize == P); 
 
 			      assert (P->bk_nextsize->fd_nextsize == P); 
 
 if (FD->fd_nextsize == NULL) { 
 
 if (P->fd_nextsize == P) 
 
 			      FD->fd_nextsize = FD->bk_nextsize = FD; 
 
 else { 
 
 			      FD->fd_nextsize = P->fd_nextsize; 
 
 			      FD->bk_nextsize = P->bk_nextsize; 
 
 			      P->fd_nextsize->bk_nextsize = FD; 
 
 			      P->bk_nextsize->fd_nextsize = FD; 
 
 } 
 
 } else { 
 
 			    P->fd_nextsize->bk_nextsize = P->bk_nextsize; 
 
 			    P->bk_nextsize->fd_nextsize = P->fd_nextsize; 
 
 } 
 
 } 
 
 } 
 
 }
 
 
 
 /*
 
 			  Indexing
 
 
 
 			    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
 
 			    8 bytes apart. Larger bins are approximately logarithmically spaced:
 
 
 
 			    64 bins of size       8
 
 			    32 bins of size      64
 
 			    16 bins of size     512
 
 			     8 bins of size    4096
 
 			     4 bins of size   32768
 
 			     2 bins of size  262144
 
 			     1 bin  of size what's left
 
 
 
 			    There is actually a little bit of slop in the numbers in bin_index
 
 for the sake of speed. This makes no difference elsewhere.
 
 
 
 			    The bins top out around 1MB because we expect to service large
 
 			    requests via mmap.
 
 */
 
 
 
 			#define NBINS             128
 
 			#define NSMALLBINS         64
 
 			#define SMALLBIN_WIDTH    MALLOC_ALIGNMENT
 
 			#define MIN_LARGE_SIZE (NSMALLBINS * SMALLBIN_WIDTH)
 
 
 
 			#define in_smallbin_range(sz) 
 
 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
 
 
 
 			#define smallbin_index(sz) 
 
 (SMALLBIN_WIDTH == 16 ? (((unsigned)(sz)) >> 4) : (((unsigned)(sz)) >> 3))
 
 
 
 			#define largebin_index_32(sz) 
 
 (((((unsigned long)(sz)) >> 6) <= 38)? 56   (((unsigned long)(sz)) >> 6): 
 
 ((((unsigned long)(sz)) >> 9) <= 20)? 91   (((unsigned long)(sz)) >> 9): 
 
 ((((unsigned long)(sz)) >> 12) <= 10)? 110   (((unsigned long)(sz)) >> 12): 
 
 ((((unsigned long)(sz)) >> 15) <= 4)? 119   (((unsigned long)(sz)) >> 15): 
 
 ((((unsigned long)(sz)) >> 18) <= 2)? 124   (((unsigned long)(sz)) >> 18): 
 
 			                    126)
 
 
 
 // XXX It remains to be seen whether it is good to keep the widths of
 
 // XXX the buckets the same or whether it should be scaled by a factor
 
 // XXX of two as well.
 
 			#define largebin_index_64(sz) 
 
 (((((unsigned long)(sz)) >> 6) <= 48)? 48   (((unsigned long)(sz)) >> 6): 
 
 ((((unsigned long)(sz)) >> 9) <= 20)? 91   (((unsigned long)(sz)) >> 9): 
 
 ((((unsigned long)(sz)) >> 12) <= 10)? 110   (((unsigned long)(sz)) >> 12): 
 
 ((((unsigned long)(sz)) >> 15) <= 4)? 119   (((unsigned long)(sz)) >> 15): 
 
 ((((unsigned long)(sz)) >> 18) <= 2)? 124   (((unsigned long)(sz)) >> 18): 
 
 			                    126)
 
 
 
 			#define largebin_index(sz) 
 
 (SIZE_SZ == 8 ? largebin_index_64 (sz) : largebin_index_32 (sz))
 
 
 
 			#define bin_index(sz) 
 
 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
 
 
 
 
 
 /*
 
 			  Unsorted chunks
 
 
 
 			    All remainders from chunk splits, as well as all returned chunks,
 
 			    are first placed in the "unsorted" bin. They are then placed
 
 in regular bins after malloc gives them ONE chance to be used before
 
 			    binning. So, basically, the unsorted_chunks list acts as a queue,
 
 			    with chunks being placed on it in free (and malloc_consolidate),
 
 and taken off (to be either used or placed in bins) in malloc.
 
 
 
 			    The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
 
 			    does not have to be taken into account in size comparisons.
 
 */
 
 
 
 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
 
 			#define unsorted_chunks(M) (bin_at(M, 1))
 
 
 
 /*
 
 			  Top
 
 
 
 			    The top-most available chunk (i.e., the one bordering the end of
 
 			    available memory) is treated specially. It is never included in
 
 			    any bin, is used only if no other chunk is available, and is
 
 			    released back to the system if it is very large (see
 
 			    M_TRIM_THRESHOLD). Because top initially
 
 			    points to its own bin with initial zero size, thus forcing
 
 			    extension on the first malloc request, we avoid having any special
 
 			    code in malloc to check whether it even exists yet. But we still
 
 			    need to do so when getting memory from system, so we make
 
 			    initial_top treat the bin as a legal but unusable chunk during the
 
 			    interval between initialization and the first call to
 
 			    sYSMALLOc. (This is somewhat delicate, since it relies on
 
 			    the 2 preceding words to be zero during this interval as well.)
 
 */
 
 
 
 /* Conveniently, the unsorted bin can be used as dummy top on first call */
 
 			#define initial_top(M) (unsorted_chunks(M))
 
 
 
 /*
 
 			  Binmap
 
 
 
 To help compensate for the large number of bins, a one-level index
 
 			    structure is used for bin-by-bin searching. `binmap' is a
 
 			    bitvector recording whether bins are definitely empty so they can
 
 			    be skipped over during during traversals. The bits are NOT always
 
 			    cleared as soon as bins are empty, but instead only
 
 			    when they are noticed to be empty during traversal in malloc.
 
 */
 
 
 
 /* Conservatively use 32 bits per map word, even if on 64bit system */
 
 			#define BINMAPSHIFT      5
 
 			#define BITSPERMAP (1U << BINMAPSHIFT)
 
 			#define BINMAPSIZE (NBINS / BITSPERMAP)
 
 
 
 			#define idx2block(i) ((i) >> BINMAPSHIFT)
 
 			#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
 
 
 
 			#define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
 
 			#define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
 
 			#define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
 
 
 
 /*
 
 			  Fastbins
 
 
 
 			    An array of lists holding recently freed small chunks. Fastbins
 
 			    are not doubly linked. It is faster to single-link them, and
 
 			    since chunks are never removed from the middles of these lists,
 
 			    double linking is not necessary. Also, unlike regular bins, they
 
 			    are not even processed in FIFO order (they use faster LIFO) since
 
 			    ordering doesn't much matter in the transient contexts in which
 
 			    fastbins are normally used.
 
 
 
 			    Chunks in fastbins keep their inuse bit set, so they cannot
 
 			    be consolidated with other free chunks. malloc_consolidate
 
 			    releases all chunks in fastbins and consolidates them with
 
 			    other free chunks.
 
 */
 
 
 
 			typedef struct malloc_chunk* mfastbinptr;
 
 			#define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
 
 
 
 /* offset 2 to use otherwise unindexable first 2 bins */
 
 			#define fastbin_index(sz) 
 
 ((((unsigned int)(sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
 
 
 
 
 
 /* The maximum fastbin request size we support */
 
 			#define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
 
 
 
 			#define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE)) 1)
 
 
 
 /*
 
 			  FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
 
 			  that triggers automatic consolidation of possibly-surrounding
 
 			  fastbin chunks. This is a heuristic, so the exact value should not
 
 			  matter too much. It is defined at half the default trim threshold as a
 
 			  compromise heuristic to only attempt consolidation if it is likely
 
 to lead to trimming. However, it is not dynamically tunable, since
 
 			  consolidation reduces fragmentation surrounding large chunks even
 
 if trimming is not used.
 
 */
 
 
 
 			#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
 
 
 
 /*
 
 			  Since the lowest 2 bits in max_fast don't matter in size comparisons,
 
 			  they are used as flags.
 
 */
 
 
 
 /*
 
 			  FASTCHUNKS_BIT held in max_fast indicates that there are probably
 
 			  some fastbin chunks. It is set true on entering a chunk into any
 
 			  fastbin, and cleared only in malloc_consolidate.
 
 
 
 			  The truth value is inverted so that have_fastchunks will be true
 
 			  upon startup (since statics are zero-filled), simplifying
 
 			  initialization checks.
 
 */
 
 
 
 			#define FASTCHUNKS_BIT (1U)
 
 
 
 			#define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
 
 			#ifdef ATOMIC_FASTBINS
 
 			#define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
 
 			#define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
 
 			#else
 
 			#define clear_fastchunks(M) ((M)->flags |= FASTCHUNKS_BIT)
 
 			#define set_fastchunks(M) ((M)->flags &= ~FASTCHUNKS_BIT)
 
 			#endif
 
 
 
 /*
 
 			  NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
 
 			  regions. Otherwise, contiguity is exploited in merging together,
 
 			  when possible, results from consecutive MORECORE calls.
 
 
 
 			  The initial value comes from MORECORE_CONTIGUOUS, but is
 
 			  changed dynamically if mmap is ever used as an sbrk substitute.
 
 */
 
 
 
 			#define NONCONTIGUOUS_BIT (2U)
 
 
 
 			#define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
 
 			#define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
 
 			#define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
 
 			#define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
 
 
 
 /*
 
 Set value of max_fast.
 
 			   Use impossibly small value if 0.
 
 			   Precondition: there are no existing fastbin chunks.
 
 			   Setting the value clears fastchunk bit but preserves noncontiguous bit.
 
 */
 
 
 
 			#define set_max_fast(s) 
 
 			  global_max_fast = (((s) == 0) 
 
 ? SMALLBIN_WIDTH: ((s   SIZE_SZ) & ~MALLOC_ALIGN_MASK))
 
 			#define get_max_fast() global_max_fast
 
 
 
 
 
 /*
 
 ----------- Internal state representation and initialization -----------
 
 */
 
 
 
 			struct malloc_state {
 
 /* Serialize access. */
 
 			  mutex_t mutex;
 
 
 
 /* Flags (formerly in max_fast). */
 
 int flags;
 
 
 
 			#if THREAD_STATS
 
 /* Statistics for locking. Only used if THREAD_STATS is defined. */
 
 			  long stat_lock_direct, stat_lock_loop, stat_lock_wait;
 
 			#endif
 
 
 
 /* Fastbins */
 
 			  mfastbinptr      fastbinsY[NFASTBINS];
 
 
 
 /* Base of the topmost chunk -- not otherwise kept in a bin */
 
 			  mchunkptr        top;
 
 
 
 /* The remainder from the most recent split of a small request */
 
 			  mchunkptr        last_remainder;
 
 
 
 /* Normal bins packed as described above */
 
 			  mchunkptr        bins[NBINS * 2 - 2];
 
 
 
 /* Bitmap of bins */
 
 			  unsigned int binmap[BINMAPSIZE];
 
 
 
 /* Linked list */
 
 			  struct malloc_state *next;
 
 
 
 			#ifdef PER_THREAD
 
 /* Linked list for free arenas. */
 
 			  struct malloc_state *next_free;
 
 			#endif
 
 
 
 /* Memory allocated from the system in this arena. */
 
 			  INTERNAL_SIZE_T system_mem;
 
 			  INTERNAL_SIZE_T max_system_mem;
 
 };
 
 
 
 			struct malloc_par {
 
 /* Tunable parameters */
 
 			  unsigned long    trim_threshold;
 
 			  INTERNAL_SIZE_T  top_pad;
 
 			  INTERNAL_SIZE_T  mmap_threshold;
 
 			#ifdef PER_THREAD
 
 			  INTERNAL_SIZE_T  arena_test;
 
 			  INTERNAL_SIZE_T  arena_max;
 
 			#endif
 
 
 
 /* Memory map support */
 
 int n_mmaps;
 
 int n_mmaps_max;
 
 int max_n_mmaps;
 
 /* the mmap_threshold is dynamic, until the user sets
 
 			     it manually, at which point we need to disable any
 
 			     dynamic behavior. */
 
 int no_dyn_threshold;
 
 
 
 /* Cache malloc_getpagesize */
 
 			  unsigned int pagesize;
 
 
 
 /* Statistics */
 
 			  INTERNAL_SIZE_T  mmapped_mem;
 
 /*INTERNAL_SIZE_T  sbrked_mem;*/
 
 /*INTERNAL_SIZE_T  max_sbrked_mem;*/
 
 			  INTERNAL_SIZE_T  max_mmapped_mem;
 
 			  INTERNAL_SIZE_T  max_total_mem; /* only kept for NO_THREADS */
 
 
 
 /* First address handed out by MORECORE/sbrk. */
 
 			  char* sbrk_base;
 
 };
 
 
 
 /* There are several instances of this struct ("arenas") in this
 
 			   malloc. If you are adapting this malloc in a way that does NOT use
 
 			   a static or mmapped malloc_state, you MUST explicitly zero-fill it
 
 			   before using. This malloc relies on the property that malloc_state
 
 is initialized to all zeroes (as is true of C statics). */
 
 
 
 			static struct malloc_state main_arena;
 
 
 
 /* There is only one instance of the malloc parameters. */
 
 
 
 			static struct malloc_par mp_;
 
 
 
 
 
 			#ifdef PER_THREAD
 
 /* Non public mallopt parameters. */
 
 			#define M_ARENA_TEST -7
 
 			#define M_ARENA_MAX -8
 
 			#endif
 
 
 
 
 
 /* Maximum size of memory handled in fastbins. */
 
 			static INTERNAL_SIZE_T global_max_fast;
 
 
 
 /*
 
 			  Initialize a malloc_state struct.
 
 
 
 			  This is called only from within malloc_consolidate, which needs
 
 			  be called in the same contexts anyway. It is never called directly
 
 			  outside of malloc_consolidate because some optimizing compilers try
 
 to inline it at all call points, which turns out not to be an
 
 			  optimization at all. (Inlining it in malloc_consolidate is fine though.)
 
 */
 
 
 
 			#if __STD_C
 
 			static void malloc_init_state(mstate av)
 
 			#else
 
 			static void malloc_init_state(av) mstate av;
 
 			#endif
 
 {
 
 int i;
 
 			  mbinptr bin;
 
 
 
 /* Establish circular links for normal bins */
 
 for (i = 1; i < NBINS;   i) {
 
 			    bin = bin_at(av,i);
 
 			    bin->fd = bin->bk = bin;
 
 }
 
 
 
 			#if MORECORE_CONTIGUOUS
 
 if (av != &main_arena)
 
 			#endif
 
 			    set_noncontiguous(av);
 
 if (av == &main_arena)
 
 			    set_max_fast(DEFAULT_MXFAST);
 
 			  av->flags |= FASTCHUNKS_BIT;
 
 
 
 			  av->top = initial_top(av);
 
 }
 
 
 
 /*
 
 			   Other internal utilities operating on mstates
 
 */
 
 
 
 			#if __STD_C
 
 			static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate);
 
 			static int sYSTRIm(size_t, mstate);
 
 			static void     malloc_consolidate(mstate);
 
 			#ifndef _LIBC
 
 			static Void_t** iALLOc(mstate, size_t, size_t*, int, Void_t**);
 
 			#endif
 
 			#else
 
 			static Void_t* sYSMALLOc();
 
 			static int sYSTRIm();
 
 			static void     malloc_consolidate();
 
 			static Void_t** iALLOc();
 
 			#endif
 
 
 
 
 
 /* -------------- Early definitions for debugging hooks ---------------- */
 
 
 
 /* Define and initialize the hook variables. These weak definitions must
 
 			   appear before any use of the variables in a function (arena.c uses one). */
 
 			#ifndef weak_variable
 
 			#ifndef _LIBC
 
 			#define weak_variable /**/
 
 			#else
 
 /* In GNU libc we want the hook variables to be weak definitions to
 
 			   avoid a problem with Emacs. */
 
 			#define weak_variable weak_function
 
 			#endif
 
 			#endif
 
 
 
 /* Forward declarations. */
 
 			static Void_t* malloc_hook_ini __MALLOC_P ((size_t sz,
 
 const __malloc_ptr_t caller));
 
 			static Void_t* realloc_hook_ini __MALLOC_P ((Void_t* ptr, size_t sz,
 
 const __malloc_ptr_t caller));
 
 			static Void_t* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
 
 const __malloc_ptr_t caller));
 
 
 
 			void weak_variable (*__malloc_initialize_hook) (void) = NULL;
 
 			void weak_variable (*__free_hook) (__malloc_ptr_t __ptr,
 
 const __malloc_ptr_t) = NULL;
 
 			__malloc_ptr_t weak_variable (*__malloc_hook)
 
 (size_t __size, const __malloc_ptr_t) = malloc_hook_ini;
 
 			__malloc_ptr_t weak_variable (*__realloc_hook)
 
 (__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t)
 
 = realloc_hook_ini;
 
 			__malloc_ptr_t weak_variable (*__memalign_hook)
 
 (size_t __alignment, size_t __size, const __malloc_ptr_t)
 
 = memalign_hook_ini;
 
 			void weak_variable (*__after_morecore_hook) (void) = NULL;
 
 
 
 
 
 /* ---------------- Error behavior ------------------------------------ */
 
 
 
 			#ifndef DEFAULT_CHECK_ACTION
 
 			#define DEFAULT_CHECK_ACTION 3
 
 			#endif
 
 
 
 			static int check_action = DEFAULT_CHECK_ACTION;
 
 
 
 
 
 /* ------------------ Testing support ----------------------------------*/
 
 
 
 			static int perturb_byte;
 
 
 
 			#define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
 
 			#define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
 
 
 
 
 
 /* ------------------- Support for multiple arenas -------------------- */
 
 			#include "arena.c"
 
 
 
 /*
 
 			  Debugging support
 
 
 
 			  These routines make a number of assertions about the states
 
 			  of data structures that should be true at all times. If any
 
 			  are not true, it's very likely that a user program has somehow
 
 			  trashed memory. (It's also possible that there is a coding error
 
 in malloc. In which case, please report 
 
 */
 
 
 
 			#if ! MALLOC_DEBUG
 
 
 
 			#define check_chunk(A,P)
 
 			#define check_free_chunk(A,P)
 
 			#define check_inuse_chunk(A,P)
 
 			#define check_remalloced_chunk(A,P,N)
 
 			#define check_malloced_chunk(A,P,N)
 
 			#define check_malloc_state(A)
 
 
 
 			#else
 
 
 
 			#define check_chunk(A,P) do_check_chunk(A,P)
 
 			#define check_free_chunk(A,P) do_check_free_chunk(A,P)
 
 			#define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
 
 			#define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
 
 			#define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
 
 			#define check_malloc_state(A) do_check_malloc_state(A)
 
 
 
 /*
 
 			  Properties of all chunks
 
 */
 
 
 
 			#if __STD_C
 
 			static void do_check_chunk(mstate av, mchunkptr p)
 
 			#else
 
 			static void do_check_chunk(av, p) mstate av; mchunkptr p;
 
 			#endif
 
 {
 
 			  unsigned long sz = chunksize(p);
 
 /* min and max possible addresses assuming contiguous allocation */
 
 			  char* max_address = (char*)(av->top)   chunksize(av->top);
 
 			  char* min_address = max_address - av->system_mem;
 
 
 
 if (!chunk_is_mmapped(p)) {
 
 
 
 /* Has legal address ... */
 
 if (p != av->top) {
 
 if (contiguous(av)) {
 
 			    assert(((char*)p) >= min_address);
 
 			    assert(((char*)p   sz) <= ((char*)(av->top)));
 
 }
 
 }
 
 else {
 
 /* top size is always at least MINSIZE */
 
 			      assert((unsigned long)(sz) >= MINSIZE);
 
 /* top predecessor always marked inuse */
 
 			      assert(prev_inuse(p));
 
 }
 
 
 
 }
 
 else {
 
 			#if HAVE_MMAP
 
 /* address is outside main heap */
 
 if (contiguous(av) && av->top != initial_top(av)) {
 
 			      assert(((char*)p) < min_address || ((char*)p) >= max_address);
 
 }
 
 /* chunk is page-aligned */
 
 			    assert(((p->prev_size   sz) & (mp_.pagesize-1)) == 0);
 
 /* mem is aligned */
 
 			    assert(aligned_OK(chunk2mem(p)));
 
 			#else
 
 /* force an appropriate assert violation if debug set */
 
 			    assert(!chunk_is_mmapped(p));
 
 			#endif
 
 }
 
 }
 
 
 
 /*
 
 			  Properties of free chunks
 
 */
 
 
 
 			#if __STD_C
 
 			static void do_check_free_chunk(mstate av, mchunkptr p)
 
 			#else
 
 			static void do_check_free_chunk(av, p) mstate av; mchunkptr p;
 
 			#endif
 
 {
 
 			  INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
 
 			  mchunkptr next = chunk_at_offset(p, sz);
 
 
 
 			  do_check_chunk(av, p);
 
 
 
 /* Chunk must claim to be free ... */
 
 			  assert(!inuse(p));
 
 			  assert (!chunk_is_mmapped(p));
 
 
 
 /* Unless a special marker, must have OK fields */
 
 if ((unsigned long)(sz) >= MINSIZE)
 
 {
 
 			    assert((sz & MALLOC_ALIGN_MASK) == 0);
 
 			    assert(aligned_OK(chunk2mem(p)));
 
 /* ... matching footer field */
 
 			    assert(next->prev_size == sz);
 
 /* ... and is fully consolidated */
 
 			    assert(prev_inuse(p));
 
 			    assert (next == av->top || inuse(next));
 
 
 
 /* ... and has minimally sane links */
 
 			    assert(p->fd->bk == p);
 
 			    assert(p->bk->fd == p);
 
 }
 
 else /* markers are always of size SIZE_SZ */
 
 			    assert(sz == SIZE_SZ);
 
 }
 
 
 
 /*
 
 			  Properties of inuse chunks
 
 */
 
 
 
 			#if __STD_C
 
 			static void do_check_inuse_chunk(mstate av, mchunkptr p)
 
 			#else
 
 			static void do_check_inuse_chunk(av, p) mstate av; mchunkptr p;
 
 			#endif
 
 {
 
 			  mchunkptr next;
 
 
 
 			  do_check_chunk(av, p);
 
 
 
 if (chunk_is_mmapped(p))
 
 			    return; /* mmapped chunks have no next/prev */
 
 
 
 /* Check whether it claims to be in use ... */
 
 			  assert(inuse(p));
 
 
 
 next = next_chunk(p);
 
 
 
 /* ... and is surrounded by OK chunks.
 
 			    Since more things can be checked with free chunks than inuse ones,
 
 if an inuse chunk borders them and debug is on, it's worth doing them.
 
 */
 
 if (!prev_inuse(p)) {
 
 /* Note that we cannot even look at prev unless it is not inuse */
 
 			    mchunkptr prv = prev_chunk(p);
 
 			    assert(next_chunk(prv) == p);
 
 			    do_check_free_chunk(av, prv);
 
 }
 
 
 
 if (next == av->top) {
 
 			    assert(prev_inuse(next));
 
 			    assert(chunksize(next) >= MINSIZE);
 
 }
 
 else if (!inuse(next))
 
 			    do_check_free_chunk(av, next);
 
 }
 
 
 
 /*
 
 			  Properties of chunks recycled from fastbins
 
 */
 
 
 
 			#if __STD_C
 
 			static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
 
 			#else
 
 			static void do_check_remalloced_chunk(av, p, s)
 
 			mstate av; mchunkptr p; INTERNAL_SIZE_T s;
 
 			#endif
 
 {
 
 			  INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
 
 
 
 if (!chunk_is_mmapped(p)) {
 
 			    assert(av == arena_for_chunk(p));
 
 if (chunk_non_main_arena(p))
 
 			      assert(av != &main_arena);
 
 else
 
 			      assert(av == &main_arena);
 
 }
 
 
 
 			  do_check_inuse_chunk(av, p);
 
 
 
 /* Legal size ... */
 
 			  assert((sz & MALLOC_ALIGN_MASK) == 0);
 
 			  assert((unsigned long)(sz) >= MINSIZE);
 
 /* ... and alignment */
 
 			  assert(aligned_OK(chunk2mem(p)));
 
 /* chunk is less than MINSIZE more than request */
 
 			  assert((long)(sz) - (long)(s) >= 0);
 
 			  assert((long)(sz) - (long)(s   MINSIZE) < 0);
 
 }
 
 
 
 /*
 
 			  Properties of nonrecycled chunks at the point they are malloced
 
 */
 
 
 
 			#if __STD_C
 
 			static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
 
 			#else
 
 			static void do_check_malloced_chunk(av, p, s)
 
 			mstate av; mchunkptr p; INTERNAL_SIZE_T s;
 
 			#endif
 
 {
 
 /* same as recycled case ... */
 
 			  do_check_remalloced_chunk(av, p, s);
 
 
 
 /*
 
 ... plus, must obey implementation invariant that prev_inuse is
 
 			    always true of any allocated chunk; i.e., that each allocated
 
 			    chunk borders either a previously allocated and still in-use
 
 			    chunk, or the base of its memory arena. This is ensured
 
 			    by making all allocations from the `lowest' part of any found
 
 			    chunk. This does not necessarily hold however for chunks
 
 			    recycled via fastbins.
 
 */
 
 
 
 			  assert(prev_inuse(p));
 
 }
 
 
 
 
 
 /*
 
 			  Properties of malloc_state.
 
 
 
 			  This may be useful for debugging malloc, as well as detecting user
 
 			  programmer errors that somehow write into malloc_state.
 
 
 
 If you are extending or experimenting with this malloc, you can
 
 			  probably figure out how to hack this routine to print out or
 
 			  display chunk addresses, sizes, bins, and other instrumentation.
 
 */
 
 
 
 			static void do_check_malloc_state(mstate av)
 
 {
 
 int i;
 
 			  mchunkptr p;
 
 			  mchunkptr q;
 
 			  mbinptr b;
 
 			  unsigned int idx;
 
 			  INTERNAL_SIZE_T size;
 
 			  unsigned long total = 0;
 
 int max_fast_bin;
 
 
 
 /* internal size_t must be no wider than pointer type */
 
 			  assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
 
 
 
 /* alignment is a power of 2 */
 
 			  assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
 
 
 
 /* cannot run remaining checks until fully initialized */
 
 if (av->top == 0 || av->top == initial_top(av))
 
 			    return;
 
 
 
 /* pagesize is a power of 2 */
 
 			  assert((mp_.pagesize & (mp_.pagesize-1)) == 0);
 
 
 
 /* A contiguous main_arena is consistent with sbrk_base. */
 
 if (av == &main_arena && contiguous(av))
 
 			    assert((char*)mp_.sbrk_base   av->system_mem ==
 
 (char*)av->top   chunksize(av->top));
 
 
 
 /* properties of fastbins */
 
 
 
 /* max_fast is in allowed range */
 
 			  assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE));
 
 
 
 			  max_fast_bin = fastbin_index(get_max_fast ());
 
 
 
 for (i = 0; i < NFASTBINS;   i) {
 
 			    p = fastbin (av, i);
 
 
 
 /* The following test can only be performed for the main arena.
 
 While mallopt calls malloc_consolidate to get rid of all fast
 
 			       bins (especially those larger than the new maximum) this does
 
 			       only happen for the main arena. Trying to do this for any
 
 			       other arena would mean those arenas have to be locked and
 
 			       malloc_consolidate be called for them. This is excessive. And
 
 			       even if this is acceptable to somebody it still cannot solve
 
 			       the problem completely since if the arena is locked a
 
 			       concurrent malloc call might create a new arena which then
 
 			       could use the newly invalid fast bins. */
 
 
 
 /* all bins past max_fast are empty */
 
 if (av == &main_arena && i > max_fast_bin)
 
 			      assert(p == 0);
 
 
 
 while (p != 0) {
 
 /* each chunk claims to be inuse */
 
 			      do_check_inuse_chunk(av, p);
 
 			      total  = chunksize(p);
 
 /* chunk belongs in this bin */
 
 			      assert(fastbin_index(chunksize(p)) == i);
 
 			      p = p->fd;
 
 }
 
 }
 
 
 
 if (total != 0)
 
 			    assert(have_fastchunks(av));
 
 else if (!have_fastchunks(av))
 
 			    assert(total == 0);
 
 
 
 /* check normal bins */
 
 for (i = 1; i < NBINS;   i) {
 
 			    b = bin_at(av,i);
 
 
 
 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
 
 if (i >= 2) {
 
 			      unsigned int binbit = get_binmap(av,i);
 
 int empty = last(b) == b;
 
 if (!binbit)
 
 			    assert(empty);
 
 else if (!empty)
 
 			    assert(binbit);
 
 }
 
 
 
 for (p = last(b); p != b; p = p->bk) {
 
 /* each chunk claims to be free */
 
 			      do_check_free_chunk(av, p);
 
 			      size = chunksize(p);
 
 			      total  = size;
 
 if (i >= 2) {
 
 /* chunk belongs in bin */
 
 			    idx = bin_index(size);
 
 			    assert(idx == i);
 
 /* lists are sorted */
 
 			    assert(p->bk == b ||
 
 (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
 
 
 
 if (!in_smallbin_range(size))
 
 {
 
 if (p->fd_nextsize != NULL)
 
 {
 
 if (p->fd_nextsize == p)
 
 			          assert (p->bk_nextsize == p);
 
 else
 
 {
 
 if (p->fd_nextsize == first (b))
 
 			              assert (chunksize (p) < chunksize (p->fd_nextsize));
 
 else
 
 			              assert (chunksize (p) > chunksize (p->fd_nextsize));
 
 
 
 if (p == first (b))
 
 			              assert (chunksize (p) > chunksize (p->bk_nextsize));
 
 else
 
 			              assert (chunksize (p) < chunksize (p->bk_nextsize));
 
 }
 
 }
 
 else
 
 			          assert (p->bk_nextsize == NULL);
 
 }
 
 } else if (!in_smallbin_range(size))
 
 			    assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
 
 /* chunk is followed by a legal chain of inuse chunks */
 
 for (q = next_chunk(p);
 
 (q != av->top && inuse(q) &&
 
 (unsigned long)(chunksize(q)) >= MINSIZE);
 
 			       q = next_chunk(q))
 
 			    do_check_inuse_chunk(av, q);
 
 }
 
 }
 
 
 
 /* top chunk is OK */
 
 			  check_chunk(av, av->top);
 
 
 
 /* sanity checks for statistics */
 
 
 
 			#ifdef NO_THREADS
 
 			  assert(total <= (unsigned long)(mp_.max_total_mem));
 
 			  assert(mp_.n_mmaps >= 0);
 
 			#endif
 
 			  assert(mp_.n_mmaps <= mp_.max_n_mmaps);
 
 
 
 			  assert((unsigned long)(av->system_mem) <=
 
 (unsigned long)(av->max_system_mem));
 
 
 
 			  assert((unsigned long)(mp_.mmapped_mem) <=
 
 (unsigned long)(mp_.max_mmapped_mem));
 
 
 
 			#ifdef NO_THREADS
 
 			  assert((unsigned long)(mp_.max_total_mem) >=
 
 (unsigned long)(mp_.mmapped_mem)   (unsigned long)(av->system_mem));
 
 			#endif
 
 }
 
 			#endif
 
 
 
 
 
 /* ----------------- Support for debugging hooks -------------------- */
 
 			#include "hooks.c"
 
 
 
 
 
 /* ----------- Routines dealing with system allocation -------------- */
 
 
 
 /*
 
 			  sysmalloc handles malloc cases requiring more memory from the system.
 
 On entry, it is assumed that av->top does not have enough
 
 space to service request for nb bytes, thus requiring that av->top
 
 			  be extended or replaced.
 
 */
 
 
 
 			#if __STD_C
 
 			static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
 
 			#else
 
 			static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
 
 			#endif
 
 {
 
 			  mchunkptr       old_top; /* incoming value of av->top */
 
 			  INTERNAL_SIZE_T old_size; /* its size */
 
 			  char* old_end; /* its end address */
 
 
 
 			  long            size; /* arg to first MORECORE or mmap call */
 
 			  char* brk; /* return value from MORECORE */
 
 
 
 			  long            correction; /* arg to 2nd MORECORE call */
 
 			  char* snd_brk; /* 2nd return val */
 
 
 
 			  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
 
 			  INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
 
 			  char* aligned_brk; /* aligned offset into brk */
 
 
 
 			  mchunkptr       p; /* the allocated/returned chunk */
 
 			  mchunkptr       remainder; /* remainder from allocation */
 
 			  unsigned long   remainder_size; /* its size */
 
 
 
 			  unsigned long   sum; /* for updating stats */
 
 
 
 			  size_t          pagemask = mp_.pagesize - 1;
 
 			  bool            tried_mmap = false;
 
 
 
 
 
 			#if HAVE_MMAP
 
 
 
 /*
 
 If have mmap, and the request size meets the mmap threshold, and
 
 			    the system supports mmap, and there are few enough currently
 
 			    allocated mmapped regions, try to directly map this request
 
 			    rather than expanding top.
 
 */
 
 
 
 if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
 
 (mp_.n_mmaps < mp_.n_mmaps_max)) {
 
 
 
 			    char* mm; /* return value from mmap call*/
 
 
 
 			  try_mmap:
 
 /*
 
 Round up size to nearest page. For mmapped chunks, the overhead
 
 is one SIZE_SZ unit larger than for normal chunks, because there
 
 is no following chunk whose prev_size field could be used.
 
 */
 
 			#if 1
 
 /* See the front_misalign handling below, for glibc there is no
 
 			       need for further alignments. */
 
 			    size = (nb   SIZE_SZ   pagemask) & ~pagemask;
 
 			#else
 
 			    size = (nb   SIZE_SZ   MALLOC_ALIGN_MASK   pagemask) & ~pagemask;
 
 			#endif
 
 			    tried_mmap = true;
 
 
 
 /* Don't try if size wraps around 0 */
 
 if ((unsigned long)(size) > (unsigned long)(nb)) {
 
 
 
 			      mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
 
 
 
 if (mm != MAP_FAILED) {
 
 
 
 /*
 
 			      The offset to the start of the mmapped region is stored
 
 in the prev_size field of the chunk. This allows us to adjust
 
 			      returned start address to meet alignment requirements here
 
 and in memalign(), and still be able to compute proper
 
 			      address argument for later munmap in free() and realloc().
 
 */
 
 
 
 			#if 1
 
 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
 
 			       MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
 
 			       aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
 
 			    assert (((INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK) == 0);
 
 			#else
 
 			    front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
 
 if (front_misalign > 0) {
 
 			      correction = MALLOC_ALIGNMENT - front_misalign;
 
 			      p = (mchunkptr)(mm   correction);
 
 			      p->prev_size = correction;
 
 			      set_head(p, (size - correction) |IS_MMAPPED);
 
 }
 
 else
 
 			#endif
 
 {
 
 			        p = (mchunkptr)mm;
 
 			        set_head(p, size|IS_MMAPPED);
 
 }
 
 
 
 /* update statistics */
 
 
 
 if (  mp_.n_mmaps > mp_.max_n_mmaps)
 
 			      mp_.max_n_mmaps = mp_.n_mmaps;
 
 
 
 			    sum = mp_.mmapped_mem  = size;
 
 if (sum > (unsigned long)(mp_.max_mmapped_mem))
 
 			      mp_.max_mmapped_mem = sum;
 
 			#ifdef NO_THREADS
 
 			    sum  = av->system_mem;
 
 if (sum > (unsigned long)(mp_.max_total_mem))
 
 			      mp_.max_total_mem = sum;
 
 			#endif
 
 
 
 			    check_chunk(av, p);
 
 
 
 			    return chunk2mem(p);
 
 }
 
 }
 
 }
 
 			#endif
 
 
 
 /* Record incoming configuration of top */
 
 
 
 			  old_top = av->top;
 
 			  old_size = chunksize(old_top);
 
 			  old_end = (char*)(chunk_at_offset(old_top, old_size));
 
 
 
 			  brk = snd_brk = (char*)(MORECORE_FAILURE);
 
 
 
 /*
 
 If not the first time through, we require old_size to be
 
 			     at least MINSIZE and to have prev_inuse set.
 
 */
 
 
 
 			  assert((old_top == initial_top(av) && old_size == 0) ||
 
 ((unsigned long) (old_size) >= MINSIZE &&
 
 			      prev_inuse(old_top) &&
 
 ((unsigned long)old_end & pagemask) == 0));
 
 
 
 /* Precondition: not enough current space to satisfy nb request */
 
 			  assert((unsigned long)(old_size) < (unsigned long)(nb   MINSIZE));
 
 
 
 			#ifndef ATOMIC_FASTBINS
 
 /* Precondition: all fastbins are consolidated */
 
 			  assert(!have_fastchunks(av));
 
 			#endif
 
 
 
 
 
 if (av != &main_arena) {
 
 
 
 			    heap_info *old_heap, *heap;
 
 			    size_t old_heap_size;
 
 
 
 /* First try to extend the current heap. */
 
 			    old_heap = heap_for_ptr(old_top);
 
 			    old_heap_size = old_heap->size;
 
 if ((long) (MINSIZE   nb - old_size) > 0
 
 && grow_heap(old_heap, MINSIZE   nb - old_size) == 0) {
 
 			      av->system_mem  = old_heap->size - old_heap_size;
 
 			      arena_mem  = old_heap->size - old_heap_size;
 
 			#if 0
 
 if(mmapped_mem   arena_mem   sbrked_mem > max_total_mem)
 
 			    max_total_mem = mmapped_mem   arena_mem   sbrked_mem;
 
 			#endif
 
 			      set_head(old_top, (((char *)old_heap   old_heap->size) - (char *)old_top)
 
 | PREV_INUSE);
 
 }
 
 else if ((heap = new_heap(nb   (MINSIZE   sizeof(*heap)), mp_.top_pad))) {
 
 /* Use a newly allocated heap. */
 
 			      heap->ar_ptr = av;
 
 			      heap->prev = old_heap;
 
 			      av->system_mem  = heap->size;
 
 			      arena_mem  = heap->size;
 
 			#if 0
 
 if((unsigned long)(mmapped_mem   arena_mem   sbrked_mem) > max_total_mem)
 
 			    max_total_mem = mmapped_mem   arena_mem   sbrked_mem;
 
 			#endif
 
 /* Set up the new top. */
 
 			      top(av) = chunk_at_offset(heap, sizeof(*heap));
 
 			      set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
 
 
 
 /* Setup fencepost and free the old top chunk. */
 
 /* The fencepost takes at least MINSIZE bytes, because it might
 
 			     become the top chunk again later. Note that a footer is set
 
 			     up, too, although the chunk is marked in use. */
 
 			      old_size -= MINSIZE;
 
 			      set_head(chunk_at_offset(old_top, old_size   2*SIZE_SZ), 0|PREV_INUSE);
 
 if (old_size >= MINSIZE) {
 
 			    set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
 
 			    set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
 
 			    set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
 
 			#ifdef ATOMIC_FASTBINS
 
 			    _int_free(av, old_top, 1);
 
 			#else
 
 			    _int_free(av, old_top);
 
 			#endif
 
 } else {
 
 			    set_head(old_top, (old_size   2*SIZE_SZ)|PREV_INUSE);
 
 			    set_foot(old_top, (old_size   2*SIZE_SZ));
 
 }
 
 }
 
 else if (!tried_mmap)
 
 /* We can at least try to use to mmap memory. */
 
 			      goto try_mmap;
 
 
 
 } else { /* av == main_arena */
 
 
 
 
 
 /* Request enough space for nb   pad   overhead */
 
 
 
 			  size = nb   mp_.top_pad   MINSIZE;
 
 
 
 /*
 
 If contiguous, we can subtract out existing space that we hope to
 
 			    combine with new space. We add it back later only if
 
 			    we don't actually get contiguous space.
 
 */
 
 
 
 if (contiguous(av))
 
 			    size -= old_size;
 
 
 
 /*
 
 Round to a multiple of page size.
 
 If MORECORE is not contiguous, this ensures that we only call it
 
 			    with whole-page arguments. And if MORECORE is contiguous and
 
 			    this is not first time through, this preserves page-alignment of
 
 			    previous calls. Otherwise, we correct to page-align below.
 
 */
 
 
 
 			  size = (size   pagemask) & ~pagemask;
 
 
 
 /*
 
 			    Don't try to call MORECORE if argument is so big as to appear
 
 			    negative. Note that since mmap takes size_t arg, it may succeed
 
 			    below even if we cannot call MORECORE.
 
 */
 
 
 
 if (size > 0)
 
 			    brk = (char*)(MORECORE(size));
 
 
 
 if (brk != (char*)(MORECORE_FAILURE)) {
 
 /* Call the `morecore' hook if necessary. */
 
 			    void (*hook) (void) = force_reg (__after_morecore_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 (*hook) ();
 
 } else {
 
 /*
 
 If have mmap, try using it as a backup when MORECORE fails or
 
 			    cannot be used. This is worth doing on systems that have "holes" in
 
 			    address space, so sbrk cannot extend to give contiguous space, but
 
 space is available elsewhere. Note that we ignore mmap max count
 
 and threshold limits, since the space will not be used as a
 
 			    segregated mmap region.
 
 */
 
 
 
 			#if HAVE_MMAP
 
 /* Cannot merge with old top, so add its size back in */
 
 if (contiguous(av))
 
 			      size = (size   old_size   pagemask) & ~pagemask;
 
 
 
 /* If we are relying on mmap as backup, then use larger units */
 
 if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
 
 			      size = MMAP_AS_MORECORE_SIZE;
 
 
 
 /* Don't try if size wraps around 0 */
 
 if ((unsigned long)(size) > (unsigned long)(nb)) {
 
 
 
 			      char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
 
 
 
 if (mbrk != MAP_FAILED) {
 
 
 
 /* We do not need, and cannot use, another sbrk call to find end */
 
 			    brk = mbrk;
 
 			    snd_brk = brk   size;
 
 
 
 /*
 
 			       Record that we no longer have a contiguous sbrk region.
 
 			       After the first time mmap is used as backup, we do not
 
 			       ever rely on contiguous space since this could incorrectly
 
 			       bridge regions.
 
 */
 
 			    set_noncontiguous(av);
 
 }
 
 }
 
 			#endif
 
 }
 
 
 
 if (brk != (char*)(MORECORE_FAILURE)) {
 
 if (mp_.sbrk_base == 0)
 
 			      mp_.sbrk_base = brk;
 
 			    av->system_mem  = size;
 
 
 
 /*
 
 If MORECORE extends previous space, we can likewise extend top size.
 
 */
 
 
 
 if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
 
 			      set_head(old_top, (size   old_size) | PREV_INUSE);
 
 
 
 else if (contiguous(av) && old_size && brk < old_end) {
 
 /* Someone else killed our space.. Can't touch anything. */
 
 			      malloc_printerr (3, "break adjusted to free malloc space", brk);
 
 }
 
 
 
 /*
 
 			      Otherwise, make adjustments:
 
 
 
 * If the first time through or noncontiguous, we need to call sbrk
 
 			    just to find out where the end of memory lies.
 
 
 
 * We need to ensure that all returned chunks from malloc will meet
 
 			    MALLOC_ALIGNMENT
 
 
 
 * If there was an intervening foreign sbrk, we need to adjust sbrk
 
 			    request size to account for fact that we will not be able to
 
 			    combine new space with existing space in old_top.
 
 
 
 * Almost all systems internally allocate whole pages at a time, in
 
 			    which case we might as well use the whole last page of request.
 
 			    So we allocate enough more memory to hit a page boundary now,
 
 			    which in turn causes future contiguous calls to page-align.
 
 */
 
 
 
 else {
 
 			      front_misalign = 0;
 
 			      end_misalign = 0;
 
 			      correction = 0;
 
 			      aligned_brk = brk;
 
 
 
 /* handle contiguous cases */
 
 if (contiguous(av)) {
 
 
 
 /* Count foreign sbrk as system_mem. */
 
 if (old_size)
 
 			      av->system_mem  = brk - old_end;
 
 
 
 /* Guarantee alignment of first new chunk made from this space */
 
 
 
 			    front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
 
 if (front_misalign > 0) {
 
 
 
 /*
 
 			        Skip over some bytes to arrive at an aligned position.
 
 			        We don't need to specially mark these wasted front bytes.
 
 			        They will never be accessed anyway because
 
 			        prev_inuse of av->top (and any chunk created from its start)
 
 is always true after initialization.
 
 */
 
 
 
 			      correction = MALLOC_ALIGNMENT - front_misalign;
 
 			      aligned_brk  = correction;
 
 }
 
 
 
 /*
 
 If this isn't adjacent to existing space, then we will not
 
 			      be able to merge with old_top space, so must add to 2nd request.
 
 */
 
 
 
 			    correction  = old_size;
 
 
 
 /* Extend the end address to hit a page boundary */
 
 			    end_misalign = (INTERNAL_SIZE_T)(brk   size   correction);
 
 			    correction  = ((end_misalign   pagemask) & ~pagemask) - end_misalign;
 
 
 
 			    assert(correction >= 0);
 
 			    snd_brk = (char*)(MORECORE(correction));
 
 
 
 /*
 
 If can't allocate correction, try to at least find out current
 
 			      brk. It might be enough to proceed without failing.
 
 
 
 			      Note that if second sbrk did NOT fail, we assume that space
 
 is contiguous with first sbrk. This is a safe assumption unless
 
 			      program is multithreaded but doesn't use locks and a foreign sbrk
 
 			      occurred between our first and second calls.
 
 */
 
 
 
 if (snd_brk == (char*)(MORECORE_FAILURE)) {
 
 			      correction = 0;
 
 			      snd_brk = (char*)(MORECORE(0));
 
 } else {
 
 /* Call the `morecore' hook if necessary. */
 
 			      void (*hook) (void) = force_reg (__after_morecore_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 (*hook) ();
 
 }
 
 }
 
 
 
 /* handle non-contiguous cases */
 
 else {
 
 /* MORECORE/mmap must correctly align */
 
 			    assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
 
 
 
 /* Find out current end of memory */
 
 if (snd_brk == (char*)(MORECORE_FAILURE)) {
 
 			      snd_brk = (char*)(MORECORE(0));
 
 }
 
 }
 
 
 
 /* Adjust top based on results of second sbrk */
 
 if (snd_brk != (char*)(MORECORE_FAILURE)) {
 
 			    av->top = (mchunkptr)aligned_brk;
 
 			    set_head(av->top, (snd_brk - aligned_brk   correction) | PREV_INUSE);
 
 			    av->system_mem  = correction;
 
 
 
 /*
 
 If not the first time through, we either have a
 
 			      gap due to foreign sbrk or a non-contiguous region. Insert a
 
 			      double fencepost at old_top to prevent consolidation with space
 
 			      we don't own. These fenceposts are artificial chunks that are
 
 			      marked as inuse and are in any case too small to use. We need
 
 			      two to make sizes and alignments work out.
 
 */
 
 
 
 if (old_size != 0) {
 
 /*
 
 			         Shrink old_top to insert fenceposts, keeping size a
 
 			         multiple of MALLOC_ALIGNMENT. We know there is at least
 
 			         enough space in old_top to do this.
 
 */
 
 			      old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
 
 			      set_head(old_top, old_size | PREV_INUSE);
 
 
 
 /*
 
 			        Note that the following assignments completely overwrite
 
 			        old_top when old_size was previously MINSIZE. This is
 
 			        intentional. We need the fencepost, even if old_top otherwise gets
 
 			        lost.
 
 */
 
 			      chunk_at_offset(old_top, old_size )->size =
 
 (2*SIZE_SZ)|PREV_INUSE;
 
 
 
 			      chunk_at_offset(old_top, old_size   2*SIZE_SZ)->size =
 
 (2*SIZE_SZ)|PREV_INUSE;
 
 
 
 /* If possible, release the rest. */
 
 if (old_size >= MINSIZE) {
 
 			#ifdef ATOMIC_FASTBINS
 
 			        _int_free(av, old_top, 1);
 
 			#else
 
 			        _int_free(av, old_top);
 
 			#endif
 
 }
 
 
 
 }
 
 }
 
 }
 
 
 
 /* Update statistics */
 
 			#ifdef NO_THREADS
 
 			    sum = av->system_mem   mp_.mmapped_mem;
 
 if (sum > (unsigned long)(mp_.max_total_mem))
 
 			      mp_.max_total_mem = sum;
 
 			#endif
 
 
 
 }
 
 
 
 } /* if (av != &main_arena) */
 
 
 
 if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
 
 			    av->max_system_mem = av->system_mem;
 
 			  check_malloc_state(av);
 
 
 
 /* finally, do the allocation */
 
 			  p = av->top;
 
 			  size = chunksize(p);
 
 
 
 /* check that one of the above allocation paths succeeded */
 
 if ((unsigned long)(size) >= (unsigned long)(nb   MINSIZE)) {
 
 			    remainder_size = size - nb;
 
 			    remainder = chunk_at_offset(p, nb);
 
 			    av->top = remainder;
 
 			    set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			    set_head(remainder, remainder_size | PREV_INUSE);
 
 			    check_malloced_chunk(av, p, nb);
 
 			    return chunk2mem(p);
 
 }
 
 
 
 /* catch all failure paths */
 
 			  MALLOC_FAILURE_ACTION;
 
 			  return 0;
 
 }
 
 
 
 
 
 /*
 
 			  sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
 
 to the system (via negative arguments to sbrk) if there is unused
 
 			  memory at the `high' end of the malloc pool. It is called
 
 			  automatically by free() when top space exceeds the trim
 
 			  threshold. It is also called by the public malloc_trim routine. It
 
 			  returns 1 if it actually released any memory, else 0.
 
 */
 
 
 
 			#if __STD_C
 
 			static int sYSTRIm(size_t pad, mstate av)
 
 			#else
 
 			static int sYSTRIm(pad, av) size_t pad; mstate av;
 
 			#endif
 
 {
 
 			  long  top_size; /* Amount of top-most memory */
 
 			  long  extra; /* Amount to release */
 
 			  long  released; /* Amount actually released */
 
 			  char* current_brk; /* address returned by pre-check sbrk call */
 
 			  char* new_brk; /* address returned by post-check sbrk call */
 
 			  size_t pagesz;
 
 
 
 			  pagesz = mp_.pagesize;
 
 			  top_size = chunksize(av->top);
 
 
 
 /* Release in pagesize units, keeping at least one page */
 
 			  extra = (top_size - pad - MINSIZE - 1) & ~(pagesz - 1);
 
 
 
 if (extra > 0) {
 
 
 
 /*
 
 			      Only proceed if end of memory is where we last set it.
 
 			      This avoids problems if there were foreign sbrk calls.
 
 */
 
 			    current_brk = (char*)(MORECORE(0));
 
 if (current_brk == (char*)(av->top)   top_size) {
 
 
 
 /*
 
 			    Attempt to release memory. We ignore MORECORE return value,
 
 and instead call again to find out where new end of memory is.
 
 			    This avoids problems if first call releases less than we asked,
 
 			    of if failure somehow altered brk value. (We could still
 
 			    encounter problems if it altered brk in some very bad way,
 
 			    but the only thing we can do is adjust anyway, which will cause
 
 			    some downstream failure.)
 
 */
 
 
 
 			      MORECORE(-extra);
 
 /* Call the `morecore' hook if necessary. */
 
 			      void (*hook) (void) = force_reg (__after_morecore_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 (*hook) ();
 
 			      new_brk = (char*)(MORECORE(0));
 
 
 
 if (new_brk != (char*)MORECORE_FAILURE) {
 
 			    released = (long)(current_brk - new_brk);
 
 
 
 if (released != 0) {
 
 /* Success. Adjust top. */
 
 			      av->system_mem -= released;
 
 			      set_head(av->top, (top_size - released) | PREV_INUSE);
 
 			      check_malloc_state(av);
 
 			      return 1;
 
 }
 
 }
 
 }
 
 }
 
 			  return 0;
 
 }
 
 
 
 			#ifdef HAVE_MMAP
 
 
 
 			static void
 
 			internal_function
 
 			#if __STD_C
 
 			munmap_chunk(mchunkptr p)
 
 			#else
 
 			munmap_chunk(p) mchunkptr p;
 
 			#endif
 
 {
 
 			  INTERNAL_SIZE_T size = chunksize(p);
 
 
 
 			  assert (chunk_is_mmapped(p));
 
 			#if 0
 
 			  assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base   mp_.sbrked_mem));
 
 			  assert((mp_.n_mmaps > 0));
 
 			#endif
 
 
 
 			  uintptr_t block = (uintptr_t) p - p->prev_size;
 
 			  size_t total_size = p->prev_size   size;
 
 /* Unfortunately we have to do the compilers job by hand here. Normally
 
 			     we would test BLOCK and TOTAL-SIZE separately for compliance with the
 
 			     page size. But gcc does not recognize the optimization possibility
 
 (in the moment at least) so we combine the two values into one before
 
 			     the bit test. */
 
 if (__builtin_expect (((block | total_size) & (mp_.pagesize - 1)) != 0, 0))
 
 {
 
 			      malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
 
 			               chunk2mem (p));
 
 			      return;
 
 }
 
 
 
 			  mp_.n_mmaps--;
 
 			  mp_.mmapped_mem -= total_size;
 
 
 
 int ret __attribute__ ((unused)) = munmap((char *)block, total_size);
 
 
 
 /* munmap returns non-zero on failure */
 
 			  assert(ret == 0);
 
 }
 
 
 
 			#if HAVE_MREMAP
 
 
 
 			static mchunkptr
 
 			internal_function
 
 			#if __STD_C
 
 			mremap_chunk(mchunkptr p, size_t new_size)
 
 			#else
 
 			mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
 
 			#endif
 
 {
 
 			  size_t page_mask = mp_.pagesize - 1;
 
 			  INTERNAL_SIZE_T offset = p->prev_size;
 
 			  INTERNAL_SIZE_T size = chunksize(p);
 
 			  char *cp;
 
 
 
 			  assert (chunk_is_mmapped(p));
 
 			#if 0
 
 			  assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base   mp_.sbrked_mem));
 
 			  assert((mp_.n_mmaps > 0));
 
 			#endif
 
 			  assert(((size   offset) & (mp_.pagesize-1)) == 0);
 
 
 
 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
 
 			  new_size = (new_size   offset   SIZE_SZ   page_mask) & ~page_mask;
 
 
 
 /* No need to remap if the number of pages does not change. */
 
 if (size   offset == new_size)
 
 			    return p;
 
 
 
 			  cp = (char *)mremap((char *)p - offset, size   offset, new_size,
 
 			              MREMAP_MAYMOVE);
 
 
 
 if (cp == MAP_FAILED) return 0;
 
 
 
 			  p = (mchunkptr)(cp   offset);
 
 
 
 			  assert(aligned_OK(chunk2mem(p)));
 
 
 
 			  assert((p->prev_size == offset));
 
 			  set_head(p, (new_size - offset)|IS_MMAPPED);
 
 
 
 			  mp_.mmapped_mem -= size   offset;
 
 			  mp_.mmapped_mem  = new_size;
 
 if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
 
 			    mp_.max_mmapped_mem = mp_.mmapped_mem;
 
 			#ifdef NO_THREADS
 
 if ((unsigned long)(mp_.mmapped_mem   arena_mem   main_arena.system_mem) >
 
 			      mp_.max_total_mem)
 
 			    mp_.max_total_mem = mp_.mmapped_mem   arena_mem   main_arena.system_mem;
 
 			#endif
 
 			  return p;
 
 }
 
 
 
 			#endif /* HAVE_MREMAP */
 
 
 
 			#endif /* HAVE_MMAP */
 
 
 
 /*------------------------ Public wrappers. --------------------------------*/
 
 
 
 			Void_t*
 
 			public_mALLOc(size_t bytes)
 
 {
 
 			  mstate ar_ptr;
 
 			  Void_t *victim;
 
 
 
 			  __malloc_ptr_t (*hook) (size_t, __const __malloc_ptr_t)
 
 = force_reg (__malloc_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 			    return (*hook)(bytes, RETURN_ADDRESS (0));
 
 
 
 			  arena_lookup(ar_ptr);
 
 			#if 0
 
 // XXX We need double-word CAS and fastbins must be extended to also
 
 // XXX hold a generation counter for each entry.
 
 if (ar_ptr) {
 
 			    INTERNAL_SIZE_T nb; /* normalized request size */
 
 			    checked_request2size(bytes, nb);
 
 if (nb <= get_max_fast ()) {
 
 			      long int idx = fastbin_index(nb);
 
 			      mfastbinptr* fb = &fastbin (ar_ptr, idx);
 
 			      mchunkptr pp = *fb;
 
 			      mchunkptr v;
 
 do
 
 {
 
 			      v = pp;
 
 if (v == NULL)
 
 			        break;
 
 }
 
 while ((pp = catomic_compare_and_exchange_val_acq (fb, v->fd, v)) != v);
 
 if (v != 0) {
 
 if (__builtin_expect (fastbin_index (chunksize (v)) != idx, 0))
 
 			      malloc_printerr (check_action, "malloc(): memory corruption (fast)",
 
 			               chunk2mem (v));
 
 			    check_remalloced_chunk(ar_ptr, v, nb);
 
 			    void *p = chunk2mem(v);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      alloc_perturb (p, bytes);
 
 			    return p;
 
 }
 
 }
 
 }
 
 			#endif
 
 
 
 			  arena_lock(ar_ptr, bytes);
 
 if(!ar_ptr)
 
 			    return 0;
 
 			  victim = _int_malloc(ar_ptr, bytes);
 
 if(!victim) {
 
 /* Maybe the failure is due to running out of mmapped areas. */
 
 if(ar_ptr != &main_arena) {
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			      ar_ptr = &main_arena;
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			      victim = _int_malloc(ar_ptr, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 } else {
 
 			#if USE_ARENAS
 
 /* ... or sbrk() has failed and there is still a chance to mmap() */
 
 			      ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
 
 (void)mutex_unlock(&main_arena.mutex);
 
 if(ar_ptr) {
 
 			    victim = _int_malloc(ar_ptr, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 }
 
 			#endif
 
 }
 
 } else
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			  assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
 
 			     ar_ptr == arena_for_chunk(mem2chunk(victim)));
 
 			  return victim;
 
 }
 
 			#ifdef libc_hidden_def
 
 			libc_hidden_def(public_mALLOc)
 
 			#endif
 
 
 
 			void
 
 			public_fREe(Void_t* mem)
 
 {
 
 			  mstate ar_ptr;
 
 			  mchunkptr p; /* chunk corresponding to mem */
 
 
 
 			  void (*hook) (__malloc_ptr_t, __const __malloc_ptr_t)
 
 = force_reg (__free_hook);
 
 if (__builtin_expect (hook != NULL, 0)) {
 
 (*hook)(mem, RETURN_ADDRESS (0));
 
 			    return;
 
 }
 
 
 
 if (mem == 0) /* free(0) has no effect */
 
 			    return;
 
 
 
 			  p = mem2chunk(mem);
 
 
 
 			#if HAVE_MMAP
 
 if (chunk_is_mmapped(p)) /* release mmapped memory. */
 
 {
 
 /* see if the dynamic brk/mmap threshold needs adjusting */
 
 if (!mp_.no_dyn_threshold
 
 && p->size > mp_.mmap_threshold
 
 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
 
 {
 
 			    mp_.mmap_threshold = chunksize (p);
 
 			    mp_.trim_threshold = 2 * mp_.mmap_threshold;
 
 }
 
 			    munmap_chunk(p);
 
 			    return;
 
 }
 
 			#endif
 
 
 
 			  ar_ptr = arena_for_chunk(p);
 
 			#ifdef ATOMIC_FASTBINS
 
 			  _int_free(ar_ptr, p, 0);
 
 			#else
 
 			# if THREAD_STATS
 
 if(!mutex_trylock(&ar_ptr->mutex))
 
   (ar_ptr->stat_lock_direct);
 
 else {
 
 (void)mutex_lock(&ar_ptr->mutex);
 
   (ar_ptr->stat_lock_wait);
 
 }
 
 			# else
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			# endif
 
 			  _int_free(ar_ptr, p);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			#endif
 
 }
 
 			#ifdef libc_hidden_def
 
 			libc_hidden_def (public_fREe)
 
 			#endif
 
 
 
 			Void_t*
 
 			public_rEALLOc(Void_t* oldmem, size_t bytes)
 
 {
 
 			  mstate ar_ptr;
 
 			  INTERNAL_SIZE_T    nb; /* padded request size */
 
 
 
 			  Void_t* newp; /* chunk to return */
 
 
 
 			  __malloc_ptr_t (*hook) (__malloc_ptr_t, size_t, __const __malloc_ptr_t) =
 
 			    force_reg (__realloc_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 			    return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
 
 
 
 			#if REALLOC_ZERO_BYTES_FREES
 
 if (bytes == 0 && oldmem != NULL) { public_fREe(oldmem); return 0; }
 
 			#endif
 
 
 
 /* realloc of null is supposed to be same as malloc */
 
 if (oldmem == 0) return public_mALLOc(bytes);
 
 
 
 /* chunk corresponding to oldmem */
 
 const mchunkptr oldp = mem2chunk(oldmem);
 
 /* its size */
 
 const INTERNAL_SIZE_T oldsize = chunksize(oldp);
 
 
 
 /* Little security check which won't hurt performance: the
 
 			     allocator never wrapps around at the end of the address space.
 
 			     Therefore we can exclude some size values which might appear
 
 			     here by accident or by "design" from some intruder. */
 
 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
 
 || __builtin_expect (misaligned_chunk (oldp), 0))
 
 {
 
 			      malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
 
 			      return NULL;
 
 }
 
 
 
 			  checked_request2size(bytes, nb);
 
 
 
 			#if HAVE_MMAP
 
 if (chunk_is_mmapped(oldp))
 
 {
 
 			    Void_t* newmem;
 
 
 
 			#if HAVE_MREMAP
 
 			    newp = mremap_chunk(oldp, nb);
 
 if(newp) return chunk2mem(newp);
 
 			#endif
 
 /* Note the extra SIZE_SZ overhead. */
 
 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
 
 /* Must alloc, copy, free. */
 
 			    newmem = public_mALLOc(bytes);
 
 if (newmem == 0) return 0; /* propagate failure */
 
 			    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
 
 			    munmap_chunk(oldp);
 
 			    return newmem;
 
 }
 
 			#endif
 
 
 
 			  ar_ptr = arena_for_chunk(oldp);
 
 			#if THREAD_STATS
 
 if(!mutex_trylock(&ar_ptr->mutex))
 
   (ar_ptr->stat_lock_direct);
 
 else {
 
 (void)mutex_lock(&ar_ptr->mutex);
 
   (ar_ptr->stat_lock_wait);
 
 }
 
 			#else
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			#endif
 
 
 
 			#if !defined NO_THREADS && !defined PER_THREAD
 
 /* As in malloc(), remember this arena for the next allocation. */
 
 			  tsd_setspecific(arena_key, (Void_t *)ar_ptr);
 
 			#endif
 
 
 
 			  newp = _int_realloc(ar_ptr, oldp, oldsize, nb);
 
 
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			  assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
 
 			     ar_ptr == arena_for_chunk(mem2chunk(newp)));
 
 
 
 if (newp == NULL)
 
 {
 
 /* Try harder to allocate memory in other arenas. */
 
 			      newp = public_mALLOc(bytes);
 
 if (newp != NULL)
 
 {
 
 			      MALLOC_COPY (newp, oldmem, oldsize - SIZE_SZ);
 
 			#ifdef ATOMIC_FASTBINS
 
 			      _int_free(ar_ptr, oldp, 0);
 
 			#else
 
 			# if THREAD_STATS
 
 if(!mutex_trylock(&ar_ptr->mutex))
 
   (ar_ptr->stat_lock_direct);
 
 else {
 
 (void)mutex_lock(&ar_ptr->mutex);
 
   (ar_ptr->stat_lock_wait);
 
 }
 
 			# else
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			# endif
 
 			      _int_free(ar_ptr, oldp);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			#endif
 
 }
 
 }
 
 
 
 			  return newp;
 
 }
 
 			#ifdef libc_hidden_def
 
 			libc_hidden_def (public_rEALLOc)
 
 			#endif
 
 
 
 			Void_t*
 
 			public_mEMALIGn(size_t alignment, size_t bytes)
 
 {
 
 			  mstate ar_ptr;
 
 			  Void_t *p;
 
 
 
 			  __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
 
 			                    __const __malloc_ptr_t)) =
 
 			    force_reg (__memalign_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 			    return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
 
 
 
 /* If need less alignment than we give anyway, just relay to malloc */
 
 if (alignment <= MALLOC_ALIGNMENT) return public_mALLOc(bytes);
 
 
 
 /* Otherwise, ensure that it is at least a minimum chunk size */
 
 if (alignment < MINSIZE) alignment = MINSIZE;
 
 
 
 			  arena_get(ar_ptr, bytes   alignment   MINSIZE);
 
 if(!ar_ptr)
 
 			    return 0;
 
 			  p = _int_memalign(ar_ptr, alignment, bytes);
 
 if(!p) {
 
 /* Maybe the failure is due to running out of mmapped areas. */
 
 if(ar_ptr != &main_arena) {
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			      ar_ptr = &main_arena;
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			      p = _int_memalign(ar_ptr, alignment, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 } else {
 
 			#if USE_ARENAS
 
 /* ... or sbrk() has failed and there is still a chance to mmap() */
 
 			      mstate prev = ar_ptr->next ? ar_ptr : 0;
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			      ar_ptr = arena_get2(prev, bytes);
 
 if(ar_ptr) {
 
 			    p = _int_memalign(ar_ptr, alignment, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 }
 
 			#endif
 
 }
 
 } else
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			  assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
 
 			     ar_ptr == arena_for_chunk(mem2chunk(p)));
 
 			  return p;
 
 }
 
 			#ifdef libc_hidden_def
 
 			libc_hidden_def (public_mEMALIGn)
 
 			#endif
 
 
 
 			Void_t*
 
 			public_vALLOc(size_t bytes)
 
 {
 
 			  mstate ar_ptr;
 
 			  Void_t *p;
 
 
 
 if(__malloc_initialized < 0)
 
 			    ptmalloc_init ();
 
 
 
 			  size_t pagesz = mp_.pagesize;
 
 
 
 			  __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
 
 			                    __const __malloc_ptr_t)) =
 
 			    force_reg (__memalign_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 			    return (*hook)(pagesz, bytes, RETURN_ADDRESS (0));
 
 
 
 			  arena_get(ar_ptr, bytes   pagesz   MINSIZE);
 
 if(!ar_ptr)
 
 			    return 0;
 
 			  p = _int_valloc(ar_ptr, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 if(!p) {
 
 /* Maybe the failure is due to running out of mmapped areas. */
 
 if(ar_ptr != &main_arena) {
 
 			      ar_ptr = &main_arena;
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			      p = _int_memalign(ar_ptr, pagesz, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 } else {
 
 			#if USE_ARENAS
 
 /* ... or sbrk() has failed and there is still a chance to mmap() */
 
 			      ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
 
 if(ar_ptr) {
 
 			    p = _int_memalign(ar_ptr, pagesz, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 }
 
 			#endif
 
 }
 
 }
 
 			  assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
 
 			     ar_ptr == arena_for_chunk(mem2chunk(p)));
 
 
 
 			  return p;
 
 }
 
 
 
 			Void_t*
 
 			public_pVALLOc(size_t bytes)
 
 {
 
 			  mstate ar_ptr;
 
 			  Void_t *p;
 
 
 
 if(__malloc_initialized < 0)
 
 			    ptmalloc_init ();
 
 
 
 			  size_t pagesz = mp_.pagesize;
 
 			  size_t page_mask = mp_.pagesize - 1;
 
 			  size_t rounded_bytes = (bytes   page_mask) & ~(page_mask);
 
 
 
 			  __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
 
 			                    __const __malloc_ptr_t)) =
 
 			    force_reg (__memalign_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 			    return (*hook)(pagesz, rounded_bytes, RETURN_ADDRESS (0));
 
 
 
 			  arena_get(ar_ptr, bytes   2*pagesz   MINSIZE);
 
 			  p = _int_pvalloc(ar_ptr, bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 if(!p) {
 
 /* Maybe the failure is due to running out of mmapped areas. */
 
 if(ar_ptr != &main_arena) {
 
 			      ar_ptr = &main_arena;
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			      p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 } else {
 
 			#if USE_ARENAS
 
 /* ... or sbrk() has failed and there is still a chance to mmap() */
 
 			      ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0,
 
 			              bytes   2*pagesz   MINSIZE);
 
 if(ar_ptr) {
 
 			    p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 }
 
 			#endif
 
 }
 
 }
 
 			  assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
 
 			     ar_ptr == arena_for_chunk(mem2chunk(p)));
 
 
 
 			  return p;
 
 }
 
 
 
 			Void_t*
 
 			public_cALLOc(size_t n, size_t elem_size)
 
 {
 
 			  mstate av;
 
 			  mchunkptr oldtop, p;
 
 			  INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
 
 			  Void_t* mem;
 
 			  unsigned long clearsize;
 
 			  unsigned long nclears;
 
 			  INTERNAL_SIZE_T* d;
 
 
 
 /* size_t is unsigned so the behavior on overflow is defined. */
 
 			  bytes = n * elem_size;
 
 			#define HALF_INTERNAL_SIZE_T 
 
 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
 
 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
 
 if (elem_size != 0 && bytes / elem_size != n) {
 
 			      MALLOC_FAILURE_ACTION;
 
 			      return 0;
 
 }
 
 }
 
 
 
 			  __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
 
 			    force_reg (__malloc_hook);
 
 if (__builtin_expect (hook != NULL, 0)) {
 
 			    sz = bytes;
 
 			    mem = (*hook)(sz, RETURN_ADDRESS (0));
 
 if(mem == 0)
 
 			      return 0;
 
 			#ifdef HAVE_MEMCPY
 
 			    return memset(mem, 0, sz);
 
 			#else
 
 while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
 
 			    return mem;
 
 			#endif
 
 }
 
 
 
 			  sz = bytes;
 
 
 
 			  arena_get(av, sz);
 
 if(!av)
 
 			    return 0;
 
 
 
 /* Check if we hand out the top chunk, in which case there may be no
 
 			     need to clear. */
 
 			#if MORECORE_CLEARS
 
 			  oldtop = top(av);
 
 			  oldtopsize = chunksize(top(av));
 
 			#if MORECORE_CLEARS < 2
 
 /* Only newly allocated memory is guaranteed to be cleared. */
 
 if (av == &main_arena &&
 
 			      oldtopsize < mp_.sbrk_base   av->max_system_mem - (char *)oldtop)
 
 			    oldtopsize = (mp_.sbrk_base   av->max_system_mem - (char *)oldtop);
 
 			#endif
 
 if (av != &main_arena)
 
 {
 
 			      heap_info *heap = heap_for_ptr (oldtop);
 
 if (oldtopsize < (char *) heap   heap->mprotect_size - (char *) oldtop)
 
 			    oldtopsize = (char *) heap   heap->mprotect_size - (char *) oldtop;
 
 }
 
 			#endif
 
 			  mem = _int_malloc(av, sz);
 
 
 
 /* Only clearing follows, so we can unlock early. */
 
 (void)mutex_unlock(&av->mutex);
 
 
 
 			  assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
 
 			     av == arena_for_chunk(mem2chunk(mem)));
 
 
 
 if (mem == 0) {
 
 /* Maybe the failure is due to running out of mmapped areas. */
 
 if(av != &main_arena) {
 
 (void)mutex_lock(&main_arena.mutex);
 
 			      mem = _int_malloc(&main_arena, sz);
 
 (void)mutex_unlock(&main_arena.mutex);
 
 } else {
 
 			#if USE_ARENAS
 
 /* ... or sbrk() has failed and there is still a chance to mmap() */
 
 (void)mutex_lock(&main_arena.mutex);
 
 			      av = arena_get2(av->next ? av : 0, sz);
 
 (void)mutex_unlock(&main_arena.mutex);
 
 if(av) {
 
 			    mem = _int_malloc(av, sz);
 
 (void)mutex_unlock(&av->mutex);
 
 }
 
 			#endif
 
 }
 
 if (mem == 0) return 0;
 
 }
 
 			  p = mem2chunk(mem);
 
 
 
 /* Two optional cases in which clearing not necessary */
 
 			#if HAVE_MMAP
 
 if (chunk_is_mmapped (p))
 
 {
 
 if (__builtin_expect (perturb_byte, 0))
 
 			    MALLOC_ZERO (mem, sz);
 
 			      return mem;
 
 }
 
 			#endif
 
 
 
 			  csz = chunksize(p);
 
 
 
 			#if MORECORE_CLEARS
 
 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) {
 
 /* clear only the bytes from non-freshly-sbrked memory */
 
 			    csz = oldtopsize;
 
 }
 
 			#endif
 
 
 
 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
 
 			     contents have an odd number of INTERNAL_SIZE_T-sized words;
 
 			     minimally 3. */
 
 			  d = (INTERNAL_SIZE_T*)mem;
 
 			  clearsize = csz - SIZE_SZ;
 
 			  nclears = clearsize / sizeof(INTERNAL_SIZE_T);
 
 			  assert(nclears >= 3);
 
 
 
 if (nclears > 9)
 
 			    MALLOC_ZERO(d, clearsize);
 
 
 
 else {
 
 *(d 0) = 0;
 
 *(d 1) = 0;
 
 *(d 2) = 0;
 
 if (nclears > 4) {
 
 *(d 3) = 0;
 
 *(d 4) = 0;
 
 if (nclears > 6) {
 
 *(d 5) = 0;
 
 *(d 6) = 0;
 
 if (nclears > 8) {
 
 *(d 7) = 0;
 
 *(d 8) = 0;
 
 }
 
 }
 
 }
 
 }
 
 
 
 			  return mem;
 
 }
 
 
 
 			#ifndef _LIBC
 
 
 
 			Void_t**
 
 			public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks)
 
 {
 
 			  mstate ar_ptr;
 
 			  Void_t** m;
 
 
 
 			  arena_get(ar_ptr, n*elem_size);
 
 if(!ar_ptr)
 
 			    return 0;
 
 
 
 			  m = _int_icalloc(ar_ptr, n, elem_size, chunks);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			  return m;
 
 }
 
 
 
 			Void_t**
 
 			public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks)
 
 {
 
 			  mstate ar_ptr;
 
 			  Void_t** m;
 
 
 
 			  arena_get(ar_ptr, 0);
 
 if(!ar_ptr)
 
 			    return 0;
 
 
 
 			  m = _int_icomalloc(ar_ptr, n, sizes, chunks);
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			  return m;
 
 }
 
 
 
 			void
 
 			public_cFREe(Void_t* m)
 
 {
 
 			  public_fREe(m);
 
 }
 
 
 
 			#endif /* _LIBC */
 
 
 
 int
 
 			public_mTRIm(size_t s)
 
 {
 
 int result = 0;
 
 
 
 if(__malloc_initialized < 0)
 
 			    ptmalloc_init ();
 
 
 
 			  mstate ar_ptr = &main_arena;
 
 do
 
 {
 
 (void) mutex_lock (&ar_ptr->mutex);
 
 			      result |= mTRIm (ar_ptr, s);
 
 (void) mutex_unlock (&ar_ptr->mutex);
 
 
 
 			      ar_ptr = ar_ptr->next;
 
 }
 
 while (ar_ptr != &main_arena);
 
 
 
 			  return result;
 
 }
 
 
 
 			size_t
 
 			public_mUSABLe(Void_t* m)
 
 {
 
 			  size_t result;
 
 
 
 			  result = mUSABLe(m);
 
 			  return result;
 
 }
 
 
 
 			void
 
 			public_mSTATs()
 
 {
 
 			  mSTATs();
 
 }
 
 
 
 			struct mallinfo public_mALLINFo()
 
 {
 
 			  struct mallinfo m;
 
 
 
 if(__malloc_initialized < 0)
 
 			    ptmalloc_init ();
 
 (void)mutex_lock(&main_arena.mutex);
 
 			  m = mALLINFo(&main_arena);
 
 (void)mutex_unlock(&main_arena.mutex);
 
 			  return m;
 
 }
 
 
 
 int
 
 			public_mALLOPt(int p, int v)
 
 {
 
 int result;
 
 			  result = mALLOPt(p, v);
 
 			  return result;
 
 }
 
 
 
 /*
 
 ------------------------------ malloc ------------------------------
 
 */
 
 
 
 			static Void_t*
 
 			_int_malloc(mstate av, size_t bytes)
 
 {
 
 			  INTERNAL_SIZE_T nb; /* normalized request size */
 
 			  unsigned int idx; /* associated bin index */
 
 			  mbinptr         bin; /* associated bin */
 
 
 
 			  mchunkptr       victim; /* inspected/selected chunk */
 
 			  INTERNAL_SIZE_T size; /* its size */
 
 int victim_index; /* its bin index */
 
 
 
 			  mchunkptr       remainder; /* remainder from a split */
 
 			  unsigned long   remainder_size; /* its size */
 
 
 
 			  unsigned int block; /* bit map traverser */
 
 			  unsigned int bit; /* bit map traverser */
 
 			  unsigned int map; /* current word of binmap */
 
 
 
 			  mchunkptr       fwd; /* misc temp for linking */
 
 			  mchunkptr       bck; /* misc temp for linking */
 
 
 
 const char *errstr = NULL;
 
 
 
 /*
 
 			    Convert request size to internal form by adding SIZE_SZ bytes
 
 			    overhead plus possibly more to obtain necessary alignment and/or
 
 to obtain a size of at least MINSIZE, the smallest allocatable
 
 			    size. Also, checked_request2size traps (returning 0) request sizes
 
 			    that are so large that they wrap around zero when padded and
 
 			    aligned.
 
 */
 
 
 
 			  checked_request2size(bytes, nb);
 
 
 
 /*
 
 If the size qualifies as a fastbin, first check corresponding bin.
 
 			    This code is safe to execute even if av is not yet initialized, so we
 
 			    can try it without checking, which saves some time on this fast path.
 
 */
 
 
 
 if ((unsigned long)(nb) <= (unsigned long)(get_max_fast ())) {
 
 			    idx = fastbin_index(nb);
 
 			    mfastbinptr* fb = &fastbin (av, idx);
 
 			#ifdef ATOMIC_FASTBINS
 
 			    mchunkptr pp = *fb;
 
 do
 
 {
 
 			    victim = pp;
 
 if (victim == NULL)
 
 			      break;
 
 }
 
 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
 
 != victim);
 
 			#else
 
 			    victim = *fb;
 
 			#endif
 
 if (victim != 0) {
 
 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
 
 {
 
 			      errstr = "malloc(): memory corruption (fast)";
 
 			    errout:
 
 			      malloc_printerr (check_action, errstr, chunk2mem (victim));
 
 			      return NULL;
 
 }
 
 			#ifndef ATOMIC_FASTBINS
 
 *fb = victim->fd;
 
 			#endif
 
 			      check_remalloced_chunk(av, victim, nb);
 
 			      void *p = chunk2mem(victim);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			    alloc_perturb (p, bytes);
 
 			      return p;
 
 }
 
 }
 
 
 
 /*
 
 If a small request, check regular bin. Since these "smallbins"
 
 			    hold one size each, no searching within bins is necessary.
 
 (For a large request, we need to wait until unsorted chunks are
 
 			    processed to find best fit. But for small ones, fits are exact
 
 			    anyway, so we can check now, which is faster.)
 
 */
 
 
 
 if (in_smallbin_range(nb)) {
 
 			    idx = smallbin_index(nb);
 
 			    bin = bin_at(av,idx);
 
 
 
 if ( (victim = last(bin)) != bin) {
 
 if (victim == 0) /* initialization check */
 
 			    malloc_consolidate(av);
 
 else {
 
 			    bck = victim->bk;
 
 if (__builtin_expect (bck->fd != victim, 0))
 
 {
 
 			        errstr = "malloc(): smallbin double linked list corrupted";
 
 			        goto errout;
 
 }
 
 			    set_inuse_bit_at_offset(victim, nb);
 
 			    bin->bk = bck;
 
 			    bck->fd = bin;
 
 
 
 if (av != &main_arena)
 
 			      victim->size |= NON_MAIN_ARENA;
 
 			    check_malloced_chunk(av, victim, nb);
 
 			    void *p = chunk2mem(victim);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      alloc_perturb (p, bytes);
 
 			    return p;
 
 }
 
 }
 
 }
 
 
 
 /*
 
 If this is a large request, consolidate fastbins before continuing.
 
 While it might look excessive to kill all fastbins before
 
 			     even seeing if there is space available, this avoids
 
 			     fragmentation problems normally associated with fastbins.
 
 			     Also, in practice, programs tend to have runs of either small or
 
 			     large requests, but less often mixtures, so consolidation is not
 
 			     invoked all that often in most programs. And the programs that
 
 			     it is called frequently in otherwise tend to fragment.
 
 */
 
 
 
 else {
 
 			    idx = largebin_index(nb);
 
 if (have_fastchunks(av))
 
 			      malloc_consolidate(av);
 
 }
 
 
 
 /*
 
 			    Process recently freed or remaindered chunks, taking one only if
 
 			    it is exact fit, or, if this a small request, the chunk is remainder from
 
 			    the most recent non-exact fit. Place other traversed chunks in
 
 			    bins. Note that this step is the only place in any routine where
 
 			    chunks are placed in bins.
 
 
 
 			    The outer loop here is needed because we might not realize until
 
 			    near the end of malloc that we should have consolidated, so must
 
 do so and retry. This happens at most once, and only when we would
 
 			    otherwise need to expand memory to service a "small" request.
 
 */
 
 
 
 for(;;) {
 
 
 
 int iters = 0;
 
 while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
 
 			      bck = victim->bk;
 
 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
 
 || __builtin_expect (victim->size > av->system_mem, 0))
 
 			    malloc_printerr (check_action, "malloc(): memory corruption",
 
 			             chunk2mem (victim));
 
 			      size = chunksize(victim);
 
 
 
 /*
 
 If a small request, try to use last remainder if it is the
 
 			     only chunk in unsorted bin. This helps promote locality for
 
 			     runs of consecutive small requests. This is the only
 
 			     exception to best-fit, and applies only when there is
 
 			     no exact fit for a small chunk.
 
 */
 
 
 
 if (in_smallbin_range(nb) &&
 
 			      bck == unsorted_chunks(av) &&
 
 			      victim == av->last_remainder &&
 
 (unsigned long)(size) > (unsigned long)(nb   MINSIZE)) {
 
 
 
 /* split and reattach remainder */
 
 			    remainder_size = size - nb;
 
 			    remainder = chunk_at_offset(victim, nb);
 
 			    unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
 
 			    av->last_remainder = remainder;
 
 			    remainder->bk = remainder->fd = unsorted_chunks(av);
 
 if (!in_smallbin_range(remainder_size))
 
 {
 
 			        remainder->fd_nextsize = NULL;
 
 			        remainder->bk_nextsize = NULL;
 
 }
 
 
 
 			    set_head(victim, nb | PREV_INUSE |
 
 (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			    set_head(remainder, remainder_size | PREV_INUSE);
 
 			    set_foot(remainder, remainder_size);
 
 
 
 			    check_malloced_chunk(av, victim, nb);
 
 			    void *p = chunk2mem(victim);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      alloc_perturb (p, bytes);
 
 			    return p;
 
 }
 
 
 
 /* remove from unsorted list */
 
 			      unsorted_chunks(av)->bk = bck;
 
 			      bck->fd = unsorted_chunks(av);
 
 
 
 /* Take now instead of binning if exact fit */
 
 
 
 if (size == nb) {
 
 			    set_inuse_bit_at_offset(victim, size);
 
 if (av != &main_arena)
 
 			      victim->size |= NON_MAIN_ARENA;
 
 			    check_malloced_chunk(av, victim, nb);
 
 			    void *p = chunk2mem(victim);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      alloc_perturb (p, bytes);
 
 			    return p;
 
 }
 
 
 
 /* place chunk in bin */
 
 
 
 if (in_smallbin_range(size)) {
 
 			    victim_index = smallbin_index(size);
 
 			    bck = bin_at(av, victim_index);
 
 			    fwd = bck->fd;
 
 }
 
 else {
 
 			    victim_index = largebin_index(size);
 
 			    bck = bin_at(av, victim_index);
 
 			    fwd = bck->fd;
 
 
 
 /* maintain large bins in sorted order */
 
 if (fwd != bck) {
 
 /* Or with inuse bit to speed comparisons */
 
 			      size |= PREV_INUSE;
 
 /* if smaller than smallest, bypass loop below */
 
 			      assert((bck->bk->size & NON_MAIN_ARENA) == 0);
 
 if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) {
 
 			        fwd = bck;
 
 			        bck = bck->bk;
 
 
 
 			        victim->fd_nextsize = fwd->fd;
 
 			        victim->bk_nextsize = fwd->fd->bk_nextsize;
 
 			        fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
 
 }
 
 else {
 
 			        assert((fwd->size & NON_MAIN_ARENA) == 0);
 
 while ((unsigned long) size < fwd->size)
 
 {
 
 			        fwd = fwd->fd_nextsize;
 
 			        assert((fwd->size & NON_MAIN_ARENA) == 0);
 
 }
 
 
 
 if ((unsigned long) size == (unsigned long) fwd->size)
 
 /* Always insert in the second position. */
 
 			          fwd = fwd->fd;
 
 else
 
 {
 
 			        victim->fd_nextsize = fwd;
 
 			        victim->bk_nextsize = fwd->bk_nextsize;
 
 			        fwd->bk_nextsize = victim;
 
 			        victim->bk_nextsize->fd_nextsize = victim;
 
 }
 
 			        bck = fwd->bk;
 
 }
 
 } else
 
 			      victim->fd_nextsize = victim->bk_nextsize = victim;
 
 }
 
 
 
 			      mark_bin(av, victim_index);
 
 			      victim->bk = bck;
 
 			      victim->fd = fwd;
 
 			      fwd->bk = victim;
 
 			      bck->fd = victim;
 
 
 
 			#define MAX_ITERS    10000
 
 if (  iters >= MAX_ITERS)
 
 			    break;
 
 }
 
 
 
 /*
 
 If a large request, scan through the chunks of current bin in
 
 			      sorted order to find smallest that fits. Use the skip list for this.
 
 */
 
 
 
 if (!in_smallbin_range(nb)) {
 
 			      bin = bin_at(av, idx);
 
 
 
 /* skip scan if empty or largest chunk is too small */
 
 if ((victim = first(bin)) != bin &&
 
 (unsigned long)(victim->size) >= (unsigned long)(nb)) {
 
 
 
 			    victim = victim->bk_nextsize;
 
 while (((unsigned long)(size = chunksize(victim)) <
 
 (unsigned long)(nb)))
 
 			      victim = victim->bk_nextsize;
 
 
 
 /* Avoid removing the first entry for a size so that the skip
 
 			       list does not have to be rerouted. */
 
 if (victim != last(bin) && victim->size == victim->fd->size)
 
 			      victim = victim->fd;
 
 
 
 			    remainder_size = size - nb;
 
 			    unlink(victim, bck, fwd);
 
 
 
 /* Exhaust */
 
 if (remainder_size < MINSIZE) {
 
 			      set_inuse_bit_at_offset(victim, size);
 
 if (av != &main_arena)
 
 			        victim->size |= NON_MAIN_ARENA;
 
 }
 
 /* Split */
 
 else {
 
 			      remainder = chunk_at_offset(victim, nb);
 
 /* We cannot assume the unsorted list is empty and therefore
 
 			         have to perform a complete insert here. */
 
 			      bck = unsorted_chunks(av);
 
 			      fwd = bck->fd;
 
 if (__builtin_expect (fwd->bk != bck, 0))
 
 {
 
 			          errstr = "malloc(): corrupted unsorted chunks";
 
 			          goto errout;
 
 }
 
 			      remainder->bk = bck;
 
 			      remainder->fd = fwd;
 
 			      bck->fd = remainder;
 
 			      fwd->bk = remainder;
 
 if (!in_smallbin_range(remainder_size))
 
 {
 
 			          remainder->fd_nextsize = NULL;
 
 			          remainder->bk_nextsize = NULL;
 
 }
 
 			      set_head(victim, nb | PREV_INUSE |
 
 (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			      set_head(remainder, remainder_size | PREV_INUSE);
 
 			      set_foot(remainder, remainder_size);
 
 }
 
 			    check_malloced_chunk(av, victim, nb);
 
 			    void *p = chunk2mem(victim);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      alloc_perturb (p, bytes);
 
 			    return p;
 
 }
 
 }
 
 
 
 /*
 
 			      Search for a chunk by scanning bins, starting with next largest
 
 			      bin. This search is strictly by best-fit; i.e., the smallest
 
 (with ties going to approximately the least recently used) chunk
 
 			      that fits is selected.
 
 
 
 			      The bitmap avoids needing to check that most blocks are nonempty.
 
 			      The particular case of skipping all bins during warm-up phases
 
 			      when no chunks have been returned yet is faster than it might look.
 
 */
 
 
 
   idx;
 
 			    bin = bin_at(av,idx);
 
 			    block = idx2block(idx);
 
 			    map = av->binmap[block];
 
 			    bit = idx2bit(idx);
 
 
 
 for (;;) {
 
 
 
 /* Skip rest of block if there are no more set bits in this block. */
 
 if (bit > map || bit == 0) {
 
 do {
 
 if (  block >= BINMAPSIZE) /* out of bins */
 
 			        goto use_top;
 
 } while ( (map = av->binmap[block]) == 0);
 
 
 
 			    bin = bin_at(av, (block << BINMAPSHIFT));
 
 			    bit = 1;
 
 }
 
 
 
 /* Advance to bin with set bit. There must be one. */
 
 while ((bit & map) == 0) {
 
 			    bin = next_bin(bin);
 
 			    bit <<= 1;
 
 			    assert(bit != 0);
 
 }
 
 
 
 /* Inspect the bin. It is likely to be non-empty */
 
 			      victim = last(bin);
 
 
 
 /* If a false alarm (empty bin), clear the bit. */
 
 if (victim == bin) {
 
 			    av->binmap[block] = map &= ~bit; /* Write through */
 
 			    bin = next_bin(bin);
 
 			    bit <<= 1;
 
 }
 
 
 
 else {
 
 			    size = chunksize(victim);
 
 
 
 /* We know the first chunk in this bin is big enough to use. */
 
 			    assert((unsigned long)(size) >= (unsigned long)(nb));
 
 
 
 			    remainder_size = size - nb;
 
 
 
 /* unlink */
 
 			    unlink(victim, bck, fwd);
 
 
 
 /* Exhaust */
 
 if (remainder_size < MINSIZE) {
 
 			      set_inuse_bit_at_offset(victim, size);
 
 if (av != &main_arena)
 
 			        victim->size |= NON_MAIN_ARENA;
 
 }
 
 
 
 /* Split */
 
 else {
 
 			      remainder = chunk_at_offset(victim, nb);
 
 
 
 /* We cannot assume the unsorted list is empty and therefore
 
 			         have to perform a complete insert here. */
 
 			      bck = unsorted_chunks(av);
 
 			      fwd = bck->fd;
 
 if (__builtin_expect (fwd->bk != bck, 0))
 
 {
 
 			          errstr = "malloc(): corrupted unsorted chunks 2";
 
 			          goto errout;
 
 }
 
 			      remainder->bk = bck;
 
 			      remainder->fd = fwd;
 
 			      bck->fd = remainder;
 
 			      fwd->bk = remainder;
 
 
 
 /* advertise as last remainder */
 
 if (in_smallbin_range(nb))
 
 			        av->last_remainder = remainder;
 
 if (!in_smallbin_range(remainder_size))
 
 {
 
 			          remainder->fd_nextsize = NULL;
 
 			          remainder->bk_nextsize = NULL;
 
 }
 
 			      set_head(victim, nb | PREV_INUSE |
 
 (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			      set_head(remainder, remainder_size | PREV_INUSE);
 
 			      set_foot(remainder, remainder_size);
 
 }
 
 			    check_malloced_chunk(av, victim, nb);
 
 			    void *p = chunk2mem(victim);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      alloc_perturb (p, bytes);
 
 			    return p;
 
 }
 
 }
 
 
 
 			  use_top:
 
 /*
 
 If large enough, split off the chunk bordering the end of memory
 
 (held in av->top). Note that this is in accord with the best-fit
 
 			      search rule. In effect, av->top is treated as larger (and thus
 
 			      less well fitting) than any other available chunk since it can
 
 			      be extended to be as large as necessary (up to system
 
 			      limitations).
 
 
 
 			      We require that av->top always exists (i.e., has size >=
 
 			      MINSIZE) after initialization, so if it would otherwise be
 
 			      exhausted by current request, it is replenished. (The main
 
 			      reason for ensuring it exists is that we may need MINSIZE space
 
 to put in fenceposts in sysmalloc.)
 
 */
 
 
 
 			    victim = av->top;
 
 			    size = chunksize(victim);
 
 
 
 if ((unsigned long)(size) >= (unsigned long)(nb   MINSIZE)) {
 
 			      remainder_size = size - nb;
 
 			      remainder = chunk_at_offset(victim, nb);
 
 			      av->top = remainder;
 
 			      set_head(victim, nb | PREV_INUSE |
 
 (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			      set_head(remainder, remainder_size | PREV_INUSE);
 
 
 
 			      check_malloced_chunk(av, victim, nb);
 
 			      void *p = chunk2mem(victim);
 
 if (__builtin_expect (perturb_byte, 0))
 
 			    alloc_perturb (p, bytes);
 
 			      return p;
 
 }
 
 
 
 			#ifdef ATOMIC_FASTBINS
 
 /* When we are using atomic ops to free fast chunks we can get
 
 			       here for all block sizes. */
 
 else if (have_fastchunks(av)) {
 
 			      malloc_consolidate(av);
 
 /* restore original bin index */
 
 if (in_smallbin_range(nb))
 
 			    idx = smallbin_index(nb);
 
 else
 
 			    idx = largebin_index(nb);
 
 }
 
 			#else
 
 /*
 
 If there is space available in fastbins, consolidate and retry,
 
 to possibly avoid expanding memory. This can occur only if nb is
 
 in smallbin range so we didn't consolidate upon entry.
 
 */
 
 
 
 else if (have_fastchunks(av)) {
 
 			      assert(in_smallbin_range(nb));
 
 			      malloc_consolidate(av);
 
 			      idx = smallbin_index(nb); /* restore original bin index */
 
 }
 
 			#endif
 
 
 
 /*
 
 			       Otherwise, relay to handle system-dependent cases
 
 */
 
 else {
 
 			      void *p = sYSMALLOc(nb, av);
 
 if (p != NULL && __builtin_expect (perturb_byte, 0))
 
 			    alloc_perturb (p, bytes);
 
 			      return p;
 
 }
 
 }
 
 }
 
 
 
 /*
 
 ------------------------------ free ------------------------------
 
 */
 
 
 
 			static void
 
 			#ifdef ATOMIC_FASTBINS
 
 			_int_free(mstate av, mchunkptr p, int have_lock)
 
 			#else
 
 			_int_free(mstate av, mchunkptr p)
 
 			#endif
 
 {
 
 			  INTERNAL_SIZE_T size; /* its size */
 
 			  mfastbinptr* fb; /* associated fastbin */
 
 			  mchunkptr       nextchunk; /* next contiguous chunk */
 
 			  INTERNAL_SIZE_T nextsize; /* its size */
 
 int nextinuse; /* true if nextchunk is used */
 
 			  INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
 
 			  mchunkptr       bck; /* misc temp for linking */
 
 			  mchunkptr       fwd; /* misc temp for linking */
 
 
 
 const char *errstr = NULL;
 
 			#ifdef ATOMIC_FASTBINS
 
 int locked = 0;
 
 			#endif
 
 
 
 			  size = chunksize(p);
 
 
 
 /* Little security check which won't hurt performance: the
 
 			     allocator never wrapps around at the end of the address space.
 
 			     Therefore we can exclude some size values which might appear
 
 			     here by accident or by "design" from some intruder. */
 
 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
 
 || __builtin_expect (misaligned_chunk (p), 0))
 
 {
 
 			      errstr = "free(): invalid pointer";
 
 			    errout:
 
 			#ifdef ATOMIC_FASTBINS
 
 if (! have_lock && locked)
 
 (void)mutex_unlock(&av->mutex);
 
 			#endif
 
 			      malloc_printerr (check_action, errstr, chunk2mem(p));
 
 			      return;
 
 }
 
 /* We know that each chunk is at least MINSIZE bytes in size. */
 
 if (__builtin_expect (size < MINSIZE, 0))
 
 {
 
 			      errstr = "free(): invalid size";
 
 			      goto errout;
 
 }
 
 
 
 			  check_inuse_chunk(av, p);
 
 
 
 /*
 
 If eligible, place chunk on a fastbin so it can be found
 
 and used quickly in malloc.
 
 */
 
 
 
 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
 
 
 
 			#if TRIM_FASTBINS
 
 /*
 
 If TRIM_FASTBINS set, don't place chunks
 
 			    bordering top into fastbins
 
 */
 
 && (chunk_at_offset(p, size) != av->top)
 
 			#endif
 
 ) {
 
 
 
 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
 
 || __builtin_expect (chunksize (chunk_at_offset (p, size))
 
 >= av->system_mem, 0))
 
 {
 
 			#ifdef ATOMIC_FASTBINS
 
 /* We might not have a lock at this point and concurrent modifications
 
 			       of system_mem might have let to a false positive. Redo the test
 
 			       after getting the lock. */
 
 if (have_lock
 
 || ({ assert (locked == 0);
 
 			          mutex_lock(&av->mutex);
 
 			          locked = 1;
 
 			          chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
 
 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
 
 }))
 
 			#endif
 
 {
 
 			        errstr = "free(): invalid next size (fast)";
 
 			        goto errout;
 
 }
 
 			#ifdef ATOMIC_FASTBINS
 
 if (! have_lock)
 
 {
 
 (void)mutex_unlock(&av->mutex);
 
 			        locked = 0;
 
 }
 
 			#endif
 
 }
 
 
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
 
 
 
 			    set_fastchunks(av);
 
 			    unsigned int idx = fastbin_index(size);
 
 			    fb = &fastbin (av, idx);
 
 
 
 			#ifdef ATOMIC_FASTBINS
 
 			    mchunkptr fd;
 
 			    mchunkptr old = *fb;
 
 			    unsigned int old_idx = ~0u;
 
 do
 
 {
 
 /* Another simple check: make sure the top of the bin is not the
 
 			       record we are going to add (i.e., double free). */
 
 if (__builtin_expect (old == p, 0))
 
 {
 
 			        errstr = "double free or corruption (fasttop)";
 
 			        goto errout;
 
 }
 
 if (old != NULL)
 
 			      old_idx = fastbin_index(chunksize(old));
 
 			    p->fd = fd = old;
 
 }
 
 while ((old = catomic_compare_and_exchange_val_rel (fb, p, fd)) != fd);
 
 
 
 if (fd != NULL && __builtin_expect (old_idx != idx, 0))
 
 {
 
 			    errstr = "invalid fastbin entry (free)";
 
 			    goto errout;
 
 }
 
 			#else
 
 /* Another simple check: make sure the top of the bin is not the
 
 			       record we are going to add (i.e., double free). */
 
 if (__builtin_expect (*fb == p, 0))
 
 {
 
 			    errstr = "double free or corruption (fasttop)";
 
 			    goto errout;
 
 }
 
 if (*fb != NULL
 
 && __builtin_expect (fastbin_index(chunksize(*fb)) != idx, 0))
 
 {
 
 			    errstr = "invalid fastbin entry (free)";
 
 			    goto errout;
 
 }
 
 
 
 			    p->fd = *fb;
 
 *fb = p;
 
 			#endif
 
 }
 
 
 
 /*
 
 			    Consolidate other non-mmapped chunks as they arrive.
 
 */
 
 
 
 else if (!chunk_is_mmapped(p)) {
 
 			#ifdef ATOMIC_FASTBINS
 
 if (! have_lock) {
 
 			# if THREAD_STATS
 
 if(!mutex_trylock(&av->mutex))
 
   (av->stat_lock_direct);
 
 else {
 
 (void)mutex_lock(&av->mutex);
 
   (av->stat_lock_wait);
 
 }
 
 			# else
 
 (void)mutex_lock(&av->mutex);
 
 			# endif
 
 			      locked = 1;
 
 }
 
 			#endif
 
 
 
 			    nextchunk = chunk_at_offset(p, size);
 
 
 
 /* Lightweight tests: check whether the block is already the
 
 			       top block. */
 
 if (__builtin_expect (p == av->top, 0))
 
 {
 
 			    errstr = "double free or corruption (top)";
 
 			    goto errout;
 
 }
 
 /* Or whether the next chunk is beyond the boundaries of the arena. */
 
 if (__builtin_expect (contiguous (av)
 
 && (char *) nextchunk
 
 >= ((char *) av->top   chunksize(av->top)), 0))
 
 {
 
 			    errstr = "double free or corruption (out)";
 
 			    goto errout;
 
 }
 
 /* Or whether the block is actually not marked used. */
 
 if (__builtin_expect (!prev_inuse(nextchunk), 0))
 
 {
 
 			    errstr = "double free or corruption (!prev)";
 
 			    goto errout;
 
 }
 
 
 
 			    nextsize = chunksize(nextchunk);
 
 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
 
 || __builtin_expect (nextsize >= av->system_mem, 0))
 
 {
 
 			    errstr = "free(): invalid next size (normal)";
 
 			    goto errout;
 
 }
 
 
 
 if (__builtin_expect (perturb_byte, 0))
 
 			      free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
 
 
 
 /* consolidate backward */
 
 if (!prev_inuse(p)) {
 
 			      prevsize = p->prev_size;
 
 			      size  = prevsize;
 
 			      p = chunk_at_offset(p, -((long) prevsize));
 
 			      unlink(p, bck, fwd);
 
 }
 
 
 
 if (nextchunk != av->top) {
 
 /* get and clear inuse bit */
 
 			      nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
 
 
 
 /* consolidate forward */
 
 if (!nextinuse) {
 
 			    unlink(nextchunk, bck, fwd);
 
 			    size  = nextsize;
 
 } else
 
 			    clear_inuse_bit_at_offset(nextchunk, 0);
 
 
 
 /*
 
 			    Place the chunk in unsorted chunk list. Chunks are
 
 not placed into regular bins until after they have
 
 			    been given one chance to be used in malloc.
 
 */
 
 
 
 			      bck = unsorted_chunks(av);
 
 			      fwd = bck->fd;
 
 if (__builtin_expect (fwd->bk != bck, 0))
 
 {
 
 			      errstr = "free(): corrupted unsorted chunks";
 
 			      goto errout;
 
 }
 
 			      p->fd = fwd;
 
 			      p->bk = bck;
 
 if (!in_smallbin_range(size))
 
 {
 
 			      p->fd_nextsize = NULL;
 
 			      p->bk_nextsize = NULL;
 
 }
 
 			      bck->fd = p;
 
 			      fwd->bk = p;
 
 
 
 			      set_head(p, size | PREV_INUSE);
 
 			      set_foot(p, size);
 
 
 
 			      check_free_chunk(av, p);
 
 }
 
 
 
 /*
 
 If the chunk borders the current high end of memory,
 
 			      consolidate into top
 
 */
 
 
 
 else {
 
 			      size  = nextsize;
 
 			      set_head(p, size | PREV_INUSE);
 
 			      av->top = p;
 
 			      check_chunk(av, p);
 
 }
 
 
 
 /*
 
 If freeing a large space, consolidate possibly-surrounding
 
 			      chunks. Then, if the total unused topmost memory exceeds trim
 
 			      threshold, ask malloc_trim to reduce top.
 
 
 
 			      Unless max_fast is 0, we don't know if there are fastbins
 
 			      bordering top, so we cannot tell for sure whether threshold
 
 			      has been reached unless fastbins are consolidated. But we
 
 			      don't want to consolidate on each free. As a compromise,
 
 			      consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
 
 is reached.
 
 */
 
 
 
 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
 
 if (have_fastchunks(av))
 
 			    malloc_consolidate(av);
 
 
 
 if (av == &main_arena) {
 
 			#ifndef MORECORE_CANNOT_TRIM
 
 if ((unsigned long)(chunksize(av->top)) >=
 
 (unsigned long)(mp_.trim_threshold))
 
 			      sYSTRIm(mp_.top_pad, av);
 
 			#endif
 
 } else {
 
 /* Always try heap_trim(), even if the top chunk is not
 
 			       large, because the corresponding heap might go away. */
 
 			    heap_info *heap = heap_for_ptr(top(av));
 
 
 
 			    assert(heap->ar_ptr == av);
 
 			    heap_trim(heap, mp_.top_pad);
 
 }
 
 }
 
 
 
 			#ifdef ATOMIC_FASTBINS
 
 if (! have_lock) {
 
 			      assert (locked);
 
 (void)mutex_unlock(&av->mutex);
 
 }
 
 			#endif
 
 }
 
 /*
 
 If the chunk was allocated via mmap, release via munmap(). Note
 
 			    that if HAVE_MMAP is false but chunk_is_mmapped is true, then
 
 			    user must have overwritten memory. There's nothing we can do to
 
 			    catch this error unless MALLOC_DEBUG is set, in which case
 
 			    check_inuse_chunk (above) will have triggered error.
 
 */
 
 
 
 else {
 
 			#if HAVE_MMAP
 
 			    munmap_chunk (p);
 
 			#endif
 
 }
 
 }
 
 
 
 /*
 
 ------------------------- malloc_consolidate -------------------------
 
 
 
 			  malloc_consolidate is a specialized version of free() that tears
 
 			  down chunks held in fastbins. Free itself cannot be used for this
 
 			  purpose since, among other things, it might place chunks back onto
 
 			  fastbins. So, instead, we need to use a minor variant of the same
 
 			  code.
 
 
 
 			  Also, because this routine needs to be called the first time through
 
 			  malloc anyway, it turns out to be the perfect place to trigger
 
 			  initialization code.
 
 */
 
 
 
 			#if __STD_C
 
 			static void malloc_consolidate(mstate av)
 
 			#else
 
 			static void malloc_consolidate(av) mstate av;
 
 			#endif
 
 {
 
 			  mfastbinptr* fb; /* current fastbin being consolidated */
 
 			  mfastbinptr* maxfb; /* last fastbin (for loop control) */
 
 			  mchunkptr       p; /* current chunk being consolidated */
 
 			  mchunkptr       nextp; /* next chunk to consolidate */
 
 			  mchunkptr       unsorted_bin; /* bin header */
 
 			  mchunkptr       first_unsorted; /* chunk to link to */
 
 
 
 /* These have same use as in free() */
 
 			  mchunkptr       nextchunk;
 
 			  INTERNAL_SIZE_T size;
 
 			  INTERNAL_SIZE_T nextsize;
 
 			  INTERNAL_SIZE_T prevsize;
 
 int nextinuse;
 
 			  mchunkptr       bck;
 
 			  mchunkptr       fwd;
 
 
 
 /*
 
 If max_fast is 0, we know that av hasn't
 
 			    yet been initialized, in which case do so below
 
 */
 
 
 
 if (get_max_fast () != 0) {
 
 			    clear_fastchunks(av);
 
 
 
 			    unsorted_bin = unsorted_chunks(av);
 
 
 
 /*
 
 			      Remove each chunk from fast bin and consolidate it, placing it
 
 then in unsorted bin. Among other reasons for doing this,
 
 			      placing in unsorted bin avoids needing to calculate actual bins
 
 until malloc is sure that chunks aren't immediately going to be
 
 			      reused anyway.
 
 */
 
 
 
 			#if 0
 
 /* It is wrong to limit the fast bins to search using get_max_fast
 
 			       because, except for the main arena, all the others might have
 
 			       blocks in the high fast bins. It's not worth it anyway, just
 
 			       search all bins all the time. */
 
 			    maxfb = &fastbin (av, fastbin_index(get_max_fast ()));
 
 			#else
 
 			    maxfb = &fastbin (av, NFASTBINS - 1);
 
 			#endif
 
 			    fb = &fastbin (av, 0);
 
 do {
 
 			#ifdef ATOMIC_FASTBINS
 
 			      p = atomic_exchange_acq (fb, 0);
 
 			#else
 
 			      p = *fb;
 
 			#endif
 
 if (p != 0) {
 
 			#ifndef ATOMIC_FASTBINS
 
 *fb = 0;
 
 			#endif
 
 do {
 
 			      check_inuse_chunk(av, p);
 
 			      nextp = p->fd;
 
 
 
 /* Slightly streamlined version of consolidation code in free() */
 
 			      size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
 
 			      nextchunk = chunk_at_offset(p, size);
 
 			      nextsize = chunksize(nextchunk);
 
 
 
 if (!prev_inuse(p)) {
 
 			        prevsize = p->prev_size;
 
 			        size  = prevsize;
 
 			        p = chunk_at_offset(p, -((long) prevsize));
 
 			        unlink(p, bck, fwd);
 
 }
 
 
 
 if (nextchunk != av->top) {
 
 			        nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
 
 
 
 if (!nextinuse) {
 
 			          size  = nextsize;
 
 			          unlink(nextchunk, bck, fwd);
 
 } else
 
 			          clear_inuse_bit_at_offset(nextchunk, 0);
 
 
 
 			        first_unsorted = unsorted_bin->fd;
 
 			        unsorted_bin->fd = p;
 
 			        first_unsorted->bk = p;
 
 
 
 if (!in_smallbin_range (size)) {
 
 			          p->fd_nextsize = NULL;
 
 			          p->bk_nextsize = NULL;
 
 }
 
 
 
 			        set_head(p, size | PREV_INUSE);
 
 			        p->bk = unsorted_bin;
 
 			        p->fd = first_unsorted;
 
 			        set_foot(p, size);
 
 }
 
 
 
 else {
 
 			        size  = nextsize;
 
 			        set_head(p, size | PREV_INUSE);
 
 			        av->top = p;
 
 }
 
 
 
 } while ( (p = nextp) != 0);
 
 
 
 }
 
 } while (fb   != maxfb);
 
 }
 
 else {
 
 			    malloc_init_state(av);
 
 			    check_malloc_state(av);
 
 }
 
 }
 
 
 
 /*
 
 ------------------------------ realloc ------------------------------
 
 */
 
 
 
 			Void_t*
 
 			_int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
 
 			         INTERNAL_SIZE_T nb)
 
 {
 
 			  mchunkptr        newp; /* chunk to return */
 
 			  INTERNAL_SIZE_T  newsize; /* its size */
 
 			  Void_t* newmem; /* corresponding user mem */
 
 
 
 			  mchunkptr next; /* next contiguous chunk after oldp */
 
 
 
 			  mchunkptr        remainder; /* extra space at end of newp */
 
 			  unsigned long    remainder_size; /* its size */
 
 
 
 			  mchunkptr        bck; /* misc temp for linking */
 
 			  mchunkptr        fwd; /* misc temp for linking */
 
 
 
 			  unsigned long    copysize; /* bytes to copy */
 
 			  unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
 
 			  INTERNAL_SIZE_T* s; /* copy source */
 
 			  INTERNAL_SIZE_T* d; /* copy destination */
 
 
 
 const char *errstr = NULL;
 
 
 
 /* oldmem size */
 
 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
 
 || __builtin_expect (oldsize >= av->system_mem, 0))
 
 {
 
 			      errstr = "realloc(): invalid old size";
 
 			    errout:
 
 			      malloc_printerr (check_action, errstr, chunk2mem(oldp));
 
 			      return NULL;
 
 }
 
 
 
 			  check_inuse_chunk(av, oldp);
 
 
 
 /* All callers already filter out mmap'ed chunks. */
 
 			#if 0
 
 if (!chunk_is_mmapped(oldp))
 
 			#else
 
 			  assert (!chunk_is_mmapped(oldp));
 
 			#endif
 
 {
 
 
 
 next = chunk_at_offset(oldp, oldsize);
 
 			    INTERNAL_SIZE_T nextsize = chunksize(next);
 
 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
 
 || __builtin_expect (nextsize >= av->system_mem, 0))
 
 {
 
 			    errstr = "realloc(): invalid next size";
 
 			    goto errout;
 
 }
 
 
 
 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
 
 /* already big enough; split below */
 
 			      newp = oldp;
 
 			      newsize = oldsize;
 
 }
 
 
 
 else {
 
 /* Try to expand forward into top */
 
 if (next == av->top &&
 
 (unsigned long)(newsize = oldsize   nextsize) >=
 
 (unsigned long)(nb   MINSIZE)) {
 
 			    set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			    av->top = chunk_at_offset(oldp, nb);
 
 			    set_head(av->top, (newsize - nb) | PREV_INUSE);
 
 			    check_inuse_chunk(av, oldp);
 
 			    return chunk2mem(oldp);
 
 }
 
 
 
 /* Try to expand forward into next chunk; split off remainder below */
 
 else if (next != av->top &&
 
 !inuse(next) &&
 
 (unsigned long)(newsize = oldsize   nextsize) >=
 
 (unsigned long)(nb)) {
 
 			    newp = oldp;
 
 			    unlink(next, bck, fwd);
 
 }
 
 
 
 /* allocate, copy, free */
 
 else {
 
 			    newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
 
 if (newmem == 0)
 
 			      return 0; /* propagate failure */
 
 
 
 			    newp = mem2chunk(newmem);
 
 			    newsize = chunksize(newp);
 
 
 
 /*
 
 			      Avoid copy if newp is next chunk after oldp.
 
 */
 
 if (newp == next) {
 
 			      newsize  = oldsize;
 
 			      newp = oldp;
 
 }
 
 else {
 
 /*
 
 			        Unroll copy of <= 36 bytes (72 if 8byte sizes)
 
 			        We know that contents have an odd number of
 
 			        INTERNAL_SIZE_T-sized words; minimally 3.
 
 */
 
 
 
 			      copysize = oldsize - SIZE_SZ;
 
 			      s = (INTERNAL_SIZE_T*)(chunk2mem(oldp));
 
 			      d = (INTERNAL_SIZE_T*)(newmem);
 
 			      ncopies = copysize / sizeof(INTERNAL_SIZE_T);
 
 			      assert(ncopies >= 3);
 
 
 
 if (ncopies > 9)
 
 			        MALLOC_COPY(d, s, copysize);
 
 
 
 else {
 
 *(d 0) = *(s 0);
 
 *(d 1) = *(s 1);
 
 *(d 2) = *(s 2);
 
 if (ncopies > 4) {
 
 *(d 3) = *(s 3);
 
 *(d 4) = *(s 4);
 
 if (ncopies > 6) {
 
 *(d 5) = *(s 5);
 
 *(d 6) = *(s 6);
 
 if (ncopies > 8) {
 
 *(d 7) = *(s 7);
 
 *(d 8) = *(s 8);
 
 }
 
 }
 
 }
 
 }
 
 
 
 			#ifdef ATOMIC_FASTBINS
 
 			      _int_free(av, oldp, 1);
 
 			#else
 
 			      _int_free(av, oldp);
 
 			#endif
 
 			      check_inuse_chunk(av, newp);
 
 			      return chunk2mem(newp);
 
 }
 
 }
 
 }
 
 
 
 /* If possible, free extra space in old or extended chunk */
 
 
 
 			    assert((unsigned long)(newsize) >= (unsigned long)(nb));
 
 
 
 			    remainder_size = newsize - nb;
 
 
 
 if (remainder_size < MINSIZE) { /* not enough extra to split off */
 
 			      set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			      set_inuse_bit_at_offset(newp, newsize);
 
 }
 
 else { /* split remainder */
 
 			      remainder = chunk_at_offset(newp, nb);
 
 			      set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			      set_head(remainder, remainder_size | PREV_INUSE |
 
 (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 /* Mark remainder as inuse so free() won't complain */
 
 			      set_inuse_bit_at_offset(remainder, remainder_size);
 
 			#ifdef ATOMIC_FASTBINS
 
 			      _int_free(av, remainder, 1);
 
 			#else
 
 			      _int_free(av, remainder);
 
 			#endif
 
 }
 
 
 
 			    check_inuse_chunk(av, newp);
 
 			    return chunk2mem(newp);
 
 }
 
 
 
 			#if 0
 
 /*
 
 			    Handle mmap cases
 
 */
 
 
 
 else {
 
 			#if HAVE_MMAP
 
 
 
 			#if HAVE_MREMAP
 
 			    INTERNAL_SIZE_T offset = oldp->prev_size;
 
 			    size_t pagemask = mp_.pagesize - 1;
 
 			    char *cp;
 
 			    unsigned long sum;
 
 
 
 /* Note the extra SIZE_SZ overhead */
 
 			    newsize = (nb   offset   SIZE_SZ   pagemask) & ~pagemask;
 
 
 
 /* don't need to remap if still within same page */
 
 if (oldsize == newsize - offset)
 
 			      return chunk2mem(oldp);
 
 
 
 			    cp = (char*)mremap((char*)oldp - offset, oldsize   offset, newsize, 1);
 
 
 
 if (cp != MAP_FAILED) {
 
 
 
 			      newp = (mchunkptr)(cp   offset);
 
 			      set_head(newp, (newsize - offset)|IS_MMAPPED);
 
 
 
 			      assert(aligned_OK(chunk2mem(newp)));
 
 			      assert((newp->prev_size == offset));
 
 
 
 /* update statistics */
 
 			      sum = mp_.mmapped_mem  = newsize - oldsize;
 
 if (sum > (unsigned long)(mp_.max_mmapped_mem))
 
 			    mp_.max_mmapped_mem = sum;
 
 			#ifdef NO_THREADS
 
 			      sum  = main_arena.system_mem;
 
 if (sum > (unsigned long)(mp_.max_total_mem))
 
 			    mp_.max_total_mem = sum;
 
 			#endif
 
 
 
 			      return chunk2mem(newp);
 
 }
 
 			#endif
 
 
 
 /* Note the extra SIZE_SZ overhead. */
 
 if ((unsigned long)(oldsize) >= (unsigned long)(nb   SIZE_SZ))
 
 			      newmem = chunk2mem(oldp); /* do nothing */
 
 else {
 
 /* Must alloc, copy, free. */
 
 			      newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
 
 if (newmem != 0) {
 
 			    MALLOC_COPY(newmem, chunk2mem(oldp), oldsize - 2*SIZE_SZ);
 
 			#ifdef ATOMIC_FASTBINS
 
 			    _int_free(av, oldp, 1);
 
 			#else
 
 			    _int_free(av, oldp);
 
 			#endif
 
 }
 
 }
 
 			    return newmem;
 
 
 
 			#else
 
 /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
 
 			    check_malloc_state(av);
 
 			    MALLOC_FAILURE_ACTION;
 
 			    return 0;
 
 			#endif
 
 }
 
 			#endif
 
 }
 
 
 
 /*
 
 ------------------------------ memalign ------------------------------
 
 */
 
 
 
 			static Void_t*
 
 			_int_memalign(mstate av, size_t alignment, size_t bytes)
 
 {
 
 			  INTERNAL_SIZE_T nb; /* padded  request size */
 
 			  char* m; /* memory returned by malloc call */
 
 			  mchunkptr       p; /* corresponding chunk */
 
 			  char* brk; /* alignment point within p */
 
 			  mchunkptr       newp; /* chunk to return */
 
 			  INTERNAL_SIZE_T newsize; /* its size */
 
 			  INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
 
 			  mchunkptr       remainder; /* spare room at end to split off */
 
 			  unsigned long   remainder_size; /* its size */
 
 			  INTERNAL_SIZE_T size;
 
 
 
 /* If need less alignment than we give anyway, just relay to malloc */
 
 
 
 if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
 
 
 
 /* Otherwise, ensure that it is at least a minimum chunk size */
 
 
 
 if (alignment < MINSIZE) alignment = MINSIZE;
 
 
 
 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
 
 if ((alignment & (alignment - 1)) != 0) {
 
 			    size_t a = MALLOC_ALIGNMENT * 2;
 
 while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
 
 			    alignment = a;
 
 }
 
 
 
 			  checked_request2size(bytes, nb);
 
 
 
 /*
 
 			    Strategy: find a spot within that chunk that meets the alignment
 
 			    request, and then possibly free the leading and trailing space.
 
 */
 
 
 
 
 
 /* Call malloc with worst case padding to hit alignment. */
 
 
 
 			  m = (char*)(_int_malloc(av, nb   alignment   MINSIZE));
 
 
 
 if (m == 0) return 0; /* propagate failure */
 
 
 
 			  p = mem2chunk(m);
 
 
 
 if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
 
 
 
 /*
 
 			      Find an aligned spot inside chunk. Since we need to give back
 
 			      leading space in a chunk of at least MINSIZE, if the first
 
 			      calculation places us at a spot with less than MINSIZE leader,
 
 			      we can move to the next aligned spot -- we've allocated enough
 
 			      total room so that this is always possible.
 
 */
 
 
 
 			    brk = (char*)mem2chunk(((unsigned long)(m   alignment - 1)) &
 
 -((signed long) alignment));
 
 if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
 
 			      brk  = alignment;
 
 
 
 			    newp = (mchunkptr)brk;
 
 			    leadsize = brk - (char*)(p);
 
 			    newsize = chunksize(p) - leadsize;
 
 
 
 /* For mmapped chunks, just adjust offset */
 
 if (chunk_is_mmapped(p)) {
 
 			      newp->prev_size = p->prev_size   leadsize;
 
 			      set_head(newp, newsize|IS_MMAPPED);
 
 			      return chunk2mem(newp);
 
 }
 
 
 
 /* Otherwise, give back leader, use the rest */
 
 			    set_head(newp, newsize | PREV_INUSE |
 
 (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			    set_inuse_bit_at_offset(newp, newsize);
 
 			    set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			#ifdef ATOMIC_FASTBINS
 
 			    _int_free(av, p, 1);
 
 			#else
 
 			    _int_free(av, p);
 
 			#endif
 
 			    p = newp;
 
 
 
 			    assert (newsize >= nb &&
 
 (((unsigned long)(chunk2mem(p))) % alignment) == 0);
 
 }
 
 
 
 /* Also give back spare room at the end */
 
 if (!chunk_is_mmapped(p)) {
 
 			    size = chunksize(p);
 
 if ((unsigned long)(size) > (unsigned long)(nb   MINSIZE)) {
 
 			      remainder_size = size - nb;
 
 			      remainder = chunk_at_offset(p, nb);
 
 			      set_head(remainder, remainder_size | PREV_INUSE |
 
 (av != &main_arena ? NON_MAIN_ARENA : 0));
 
 			      set_head_size(p, nb);
 
 			#ifdef ATOMIC_FASTBINS
 
 			      _int_free(av, remainder, 1);
 
 			#else
 
 			      _int_free(av, remainder);
 
 			#endif
 
 }
 
 }
 
 
 
 			  check_inuse_chunk(av, p);
 
 			  return chunk2mem(p);
 
 }
 
 
 
 			#if 0
 
 /*
 
 ------------------------------ calloc ------------------------------
 
 */
 
 
 
 			#if __STD_C
 
 			Void_t* cALLOc(size_t n_elements, size_t elem_size)
 
 			#else
 
 			Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
 
 			#endif
 
 {
 
 			  mchunkptr p;
 
 			  unsigned long clearsize;
 
 			  unsigned long nclears;
 
 			  INTERNAL_SIZE_T* d;
 
 
 
 			  Void_t* mem = mALLOc(n_elements * elem_size);
 
 
 
 if (mem != 0) {
 
 			    p = mem2chunk(mem);
 
 
 
 			#if MMAP_CLEARS
 
 if (!chunk_is_mmapped(p)) /* don't need to clear mmapped space */
 
 			#endif
 
 {
 
 /*
 
 			    Unroll clear of <= 36 bytes (72 if 8byte sizes)
 
 			    We know that contents have an odd number of
 
 			    INTERNAL_SIZE_T-sized words; minimally 3.
 
 */
 
 
 
 			      d = (INTERNAL_SIZE_T*)mem;
 
 			      clearsize = chunksize(p) - SIZE_SZ;
 
 			      nclears = clearsize / sizeof(INTERNAL_SIZE_T);
 
 			      assert(nclears >= 3);
 
 
 
 if (nclears > 9)
 
 			    MALLOC_ZERO(d, clearsize);
 
 
 
 else {
 
 *(d 0) = 0;
 
 *(d 1) = 0;
 
 *(d 2) = 0;
 
 if (nclears > 4) {
 
 *(d 3) = 0;
 
 *(d 4) = 0;
 
 if (nclears > 6) {
 
 *(d 5) = 0;
 
 *(d 6) = 0;
 
 if (nclears > 8) {
 
 *(d 7) = 0;
 
 *(d 8) = 0;
 
 }
 
 }
 
 }
 
 }
 
 }
 
 }
 
 			  return mem;
 
 }
 
 			#endif /* 0 */
 
 
 
 			#ifndef _LIBC
 
 /*
 
 ------------------------- independent_calloc -------------------------
 
 */
 
 
 
 			Void_t**
 
 			#if __STD_C
 
 			_int_icalloc(mstate av, size_t n_elements, size_t elem_size, Void_t* chunks[])
 
 			#else
 
 			_int_icalloc(av, n_elements, elem_size, chunks)
 
 			mstate av; size_t n_elements; size_t elem_size; Void_t* chunks[];
 
 			#endif
 
 {
 
 			  size_t sz = elem_size; /* serves as 1-element array */
 
 /* opts arg of 3 means all elements are same size, and should be cleared */
 
 			  return iALLOc(av, n_elements, &sz, 3, chunks);
 
 }
 
 
 
 /*
 
 ------------------------- independent_comalloc -------------------------
 
 */
 
 
 
 			Void_t**
 
 			#if __STD_C
 
 			_int_icomalloc(mstate av, size_t n_elements, size_t sizes[], Void_t* chunks[])
 
 			#else
 
 			_int_icomalloc(av, n_elements, sizes, chunks)
 
 			mstate av; size_t n_elements; size_t sizes[]; Void_t* chunks[];
 
 			#endif
 
 {
 
 			  return iALLOc(av, n_elements, sizes, 0, chunks);
 
 }
 
 
 
 
 
 /*
 
 ------------------------------ ialloc ------------------------------
 
 			  ialloc provides common support for independent_X routines, handling all of
 
 			  the combinations that can result.
 
 
 
 			  The opts arg has:
 
 			    bit 0 set if all elements are same size (using sizes[0])
 
 			    bit 1 set if elements should be zeroed
 
 */
 
 
 
 
 
 			static Void_t**
 
 			#if __STD_C
 
 			iALLOc(mstate av, size_t n_elements, size_t* sizes, int opts, Void_t* chunks[])
 
 			#else
 
 			iALLOc(av, n_elements, sizes, opts, chunks)
 
 			mstate av; size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
 
 			#endif
 
 {
 
 			  INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */
 
 			  INTERNAL_SIZE_T contents_size; /* total size of elements */
 
 			  INTERNAL_SIZE_T array_size; /* request size of pointer array */
 
 			  Void_t* mem; /* malloced aggregate space */
 
 			  mchunkptr       p; /* corresponding chunk */
 
 			  INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
 
 			  Void_t** marray; /* either "chunks" or malloced ptr array */
 
 			  mchunkptr       array_chunk; /* chunk for malloced ptr array */
 
 int mmx; /* to disable mmap */
 
 			  INTERNAL_SIZE_T size;
 
 			  INTERNAL_SIZE_T size_flags;
 
 			  size_t          i;
 
 
 
 /* Ensure initialization/consolidation */
 
 if (have_fastchunks(av)) malloc_consolidate(av);
 
 
 
 /* compute array length, if needed */
 
 if (chunks != 0) {
 
 if (n_elements == 0)
 
 			      return chunks; /* nothing to do */
 
 			    marray = chunks;
 
 			    array_size = 0;
 
 }
 
 else {
 
 /* if empty req, must still return chunk representing empty array */
 
 if (n_elements == 0)
 
 			      return (Void_t**) _int_malloc(av, 0);
 
 			    marray = 0;
 
 			    array_size = request2size(n_elements * (sizeof(Void_t*)));
 
 }
 
 
 
 /* compute total element size */
 
 if (opts & 0x1) { /* all-same-size */
 
 			    element_size = request2size(*sizes);
 
 			    contents_size = n_elements * element_size;
 
 }
 
 else { /* add up all the sizes */
 
 			    element_size = 0;
 
 			    contents_size = 0;
 
 for (i = 0; i != n_elements;   i)
 
 			      contents_size  = request2size(sizes[i]);
 
 }
 
 
 
 /* subtract out alignment bytes from total to minimize overallocation */
 
 			  size = contents_size   array_size - MALLOC_ALIGN_MASK;
 
 
 
 /*
 
 			     Allocate the aggregate chunk.
 
 			     But first disable mmap so malloc won't use it, since
 
 			     we would not be able to later free/realloc space internal
 
 to a segregated mmap region.
 
 */
 
 			  mmx = mp_.n_mmaps_max; /* disable mmap */
 
 			  mp_.n_mmaps_max = 0;
 
 			  mem = _int_malloc(av, size);
 
 			  mp_.n_mmaps_max = mmx; /* reset mmap */
 
 if (mem == 0)
 
 			    return 0;
 
 
 
 			  p = mem2chunk(mem);
 
 			  assert(!chunk_is_mmapped(p));
 
 			  remainder_size = chunksize(p);
 
 
 
 if (opts & 0x2) { /* optionally clear the elements */
 
 			    MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
 
 }
 
 
 
 			  size_flags = PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0);
 
 
 
 /* If not provided, allocate the pointer array as final part of chunk */
 
 if (marray == 0) {
 
 			    array_chunk = chunk_at_offset(p, contents_size);
 
 			    marray = (Void_t**) (chunk2mem(array_chunk));
 
 			    set_head(array_chunk, (remainder_size - contents_size) | size_flags);
 
 			    remainder_size = contents_size;
 
 }
 
 
 
 /* split out elements */
 
 for (i = 0; ;   i) {
 
 			    marray[i] = chunk2mem(p);
 
 if (i != n_elements-1) {
 
 if (element_size != 0)
 
 			    size = element_size;
 
 else
 
 			    size = request2size(sizes[i]);
 
 			      remainder_size -= size;
 
 			      set_head(p, size | size_flags);
 
 			      p = chunk_at_offset(p, size);
 
 }
 
 else { /* the final element absorbs any overallocation slop */
 
 			      set_head(p, remainder_size | size_flags);
 
 			      break;
 
 }
 
 }
 
 
 
 			#if MALLOC_DEBUG
 
 if (marray != chunks) {
 
 /* final element must have exactly exhausted chunk */
 
 if (element_size != 0)
 
 			      assert(remainder_size == element_size);
 
 else
 
 			      assert(remainder_size == request2size(sizes[i]));
 
 			    check_inuse_chunk(av, mem2chunk(marray));
 
 }
 
 
 
 for (i = 0; i != n_elements;   i)
 
 			    check_inuse_chunk(av, mem2chunk(marray[i]));
 
 			#endif
 
 
 
 			  return marray;
 
 }
 
 			#endif /* _LIBC */
 
 
 
 
 
 /*
 
 ------------------------------ valloc ------------------------------
 
 */
 
 
 
 			static Void_t*
 
 			#if __STD_C
 
 			_int_valloc(mstate av, size_t bytes)
 
 			#else
 
 			_int_valloc(av, bytes) mstate av; size_t bytes;
 
 			#endif
 
 {
 
 /* Ensure initialization/consolidation */
 
 if (have_fastchunks(av)) malloc_consolidate(av);
 
 			  return _int_memalign(av, mp_.pagesize, bytes);
 
 }
 
 
 
 /*
 
 ------------------------------ pvalloc ------------------------------
 
 */
 
 
 
 
 
 			static Void_t*
 
 			#if __STD_C
 
 			_int_pvalloc(mstate av, size_t bytes)
 
 			#else
 
 			_int_pvalloc(av, bytes) mstate av, size_t bytes;
 
 			#endif
 
 {
 
 			  size_t pagesz;
 
 
 
 /* Ensure initialization/consolidation */
 
 if (have_fastchunks(av)) malloc_consolidate(av);
 
 			  pagesz = mp_.pagesize;
 
 			  return _int_memalign(av, pagesz, (bytes   pagesz - 1) & ~(pagesz - 1));
 
 }
 
 
 
 
 
 /*
 
 ------------------------------ malloc_trim ------------------------------
 
 */
 
 
 
 			#if __STD_C
 
 			static int mTRIm(mstate av, size_t pad)
 
 			#else
 
 			static int mTRIm(av, pad) mstate av; size_t pad;
 
 			#endif
 
 {
 
 /* Ensure initialization/consolidation */
 
 			  malloc_consolidate (av);
 
 
 
 const size_t ps = mp_.pagesize;
 
 int psindex = bin_index (ps);
 
 const size_t psm1 = ps - 1;
 
 
 
 int result = 0;
 
 for (int i = 1; i < NBINS;   i)
 
 if (i == 1 || i >= psindex)
 
 {
 
 			    mbinptr bin = bin_at (av, i);
 
 
 
 for (mchunkptr p = last (bin); p != bin; p = p->bk)
 
 {
 
 			        INTERNAL_SIZE_T size = chunksize (p);
 
 
 
 if (size > psm1   sizeof (struct malloc_chunk))
 
 {
 
 /* See whether the chunk contains at least one unused page. */
 
 			        char *paligned_mem = (char *) (((uintptr_t) p
 
   sizeof (struct malloc_chunk)
 
   psm1) & ~psm1);
 
 
 
 			        assert ((char *) chunk2mem (p)   4 * SIZE_SZ <= paligned_mem);
 
 			        assert ((char *) p   size > paligned_mem);
 
 
 
 /* This is the size we could potentially free. */
 
 			        size -= paligned_mem - (char *) p;
 
 
 
 if (size > psm1)
 
 {
 
 			#ifdef MALLOC_DEBUG
 
 /* When debugging we simulate destroying the memory
 
 			               content. */
 
 			            memset (paligned_mem, 0x89, size & ~psm1);
 
 			#endif
 
 			            madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
 
 
 
 			            result = 1;
 
 }
 
 }
 
 }
 
 }
 
 
 
 			#ifndef MORECORE_CANNOT_TRIM
 
 			  return result | (av == &main_arena ? sYSTRIm (pad, av) : 0);
 
 			#else
 
 			  return result;
 
 			#endif
 
 }
 
 
 
 
 
 /*
 
 ------------------------- malloc_usable_size -------------------------
 
 */
 
 
 
 			#if __STD_C
 
 			size_t mUSABLe(Void_t* mem)
 
 			#else
 
 			size_t mUSABLe(mem) Void_t* mem;
 
 			#endif
 
 {
 
 			  mchunkptr p;
 
 if (mem != 0) {
 
 			    p = mem2chunk(mem);
 
 if (chunk_is_mmapped(p))
 
 			      return chunksize(p) - 2*SIZE_SZ;
 
 else if (inuse(p))
 
 			      return chunksize(p) - SIZE_SZ;
 
 }
 
 			  return 0;
 
 }
 
 
 
 /*
 
 ------------------------------ mallinfo ------------------------------
 
 */
 
 
 
 			struct mallinfo mALLINFo(mstate av)
 
 {
 
 			  struct mallinfo mi;
 
 			  size_t i;
 
 			  mbinptr b;
 
 			  mchunkptr p;
 
 			  INTERNAL_SIZE_T avail;
 
 			  INTERNAL_SIZE_T fastavail;
 
 int nblocks;
 
 int nfastblocks;
 
 
 
 /* Ensure initialization */
 
 if (av->top == 0) malloc_consolidate(av);
 
 
 
 			  check_malloc_state(av);
 
 
 
 /* Account for top */
 
 			  avail = chunksize(av->top);
 
 			  nblocks = 1; /* top always exists */
 
 
 
 /* traverse fastbins */
 
 			  nfastblocks = 0;
 
 			  fastavail = 0;
 
 
 
 for (i = 0; i < NFASTBINS;   i) {
 
 for (p = fastbin (av, i); p != 0; p = p->fd) {
 
   nfastblocks;
 
 			      fastavail  = chunksize(p);
 
 }
 
 }
 
 
 
 			  avail  = fastavail;
 
 
 
 /* traverse regular bins */
 
 for (i = 1; i < NBINS;   i) {
 
 			    b = bin_at(av, i);
 
 for (p = last(b); p != b; p = p->bk) {
 
   nblocks;
 
 			      avail  = chunksize(p);
 
 }
 
 }
 
 
 
 			  mi.smblks = nfastblocks;
 
 			  mi.ordblks = nblocks;
 
 			  mi.fordblks = avail;
 
 			  mi.uordblks = av->system_mem - avail;
 
 			  mi.arena = av->system_mem;
 
 			  mi.hblks = mp_.n_mmaps;
 
 			  mi.hblkhd = mp_.mmapped_mem;
 
 			  mi.fsmblks = fastavail;
 
 			  mi.keepcost = chunksize(av->top);
 
 			  mi.usmblks = mp_.max_total_mem;
 
 			  return mi;
 
 }
 
 
 
 /*
 
 ------------------------------ malloc_stats ------------------------------
 
 */
 
 
 
 			void mSTATs()
 
 {
 
 int i;
 
 			  mstate ar_ptr;
 
 			  struct mallinfo mi;
 
 			  unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
 
 			#if THREAD_STATS
 
 			  long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
 
 			#endif
 
 
 
 if(__malloc_initialized < 0)
 
 			    ptmalloc_init ();
 
 			#ifdef _LIBC
 
 			  _IO_flockfile (stderr);
 
 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
 
 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
 
 			#endif
 
 for (i=0, ar_ptr = &main_arena;; i  ) {
 
 (void)mutex_lock(&ar_ptr->mutex);
 
 			    mi = mALLINFo(ar_ptr);
 
 			    fprintf(stderr, "Arena %d:n", i);
 
 			    fprintf(stderr, "system bytes     = un", (unsigned int)mi.arena);
 
 			    fprintf(stderr, "in use bytes     = un", (unsigned int)mi.uordblks);
 
 			#if MALLOC_DEBUG > 1
 
 if (i > 0)
 
 			      dump_heap(heap_for_ptr(top(ar_ptr)));
 
 			#endif
 
 			    system_b  = mi.arena;
 
 			    in_use_b  = mi.uordblks;
 
 			#if THREAD_STATS
 
 			    stat_lock_direct  = ar_ptr->stat_lock_direct;
 
 			    stat_lock_loop  = ar_ptr->stat_lock_loop;
 
 			    stat_lock_wait  = ar_ptr->stat_lock_wait;
 
 			#endif
 
 (void)mutex_unlock(&ar_ptr->mutex);
 
 			    ar_ptr = ar_ptr->next;
 
 if(ar_ptr == &main_arena) break;
 
 }
 
 			#if HAVE_MMAP
 
 			  fprintf(stderr, "Total (incl. mmap):n");
 
 			#else
 
 			  fprintf(stderr, "Total:n");
 
 			#endif
 
 			  fprintf(stderr, "system bytes     = un", system_b);
 
 			  fprintf(stderr, "in use bytes     = un", in_use_b);
 
 			#ifdef NO_THREADS
 
 			  fprintf(stderr, "max system bytes = un", (unsigned int)mp_.max_total_mem);
 
 			#endif
 
 			#if HAVE_MMAP
 
 			  fprintf(stderr, "max mmap regions = un", (unsigned int)mp_.max_n_mmaps);
 
 			  fprintf(stderr, "max mmap bytes   = lun",
 
 (unsigned long)mp_.max_mmapped_mem);
 
 			#endif
 
 			#if THREAD_STATS
 
 			  fprintf(stderr, "heaps created    = dn", stat_n_heaps);
 
 			  fprintf(stderr, "locked directly  = ldn", stat_lock_direct);
 
 			  fprintf(stderr, "locked in loop   = ldn", stat_lock_loop);
 
 			  fprintf(stderr, "locked waiting   = ldn", stat_lock_wait);
 
 			  fprintf(stderr, "locked total     = ldn",
 
 			      stat_lock_direct   stat_lock_loop   stat_lock_wait);
 
 			#endif
 
 			#ifdef _LIBC
 
 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
 
 			  _IO_funlockfile (stderr);
 
 			#endif
 
 }
 
 
 
 
 
 /*
 
 ------------------------------ mallopt ------------------------------
 
 */
 
 
 
 			#if __STD_C
 
 int mALLOPt(int param_number, int value)
 
 			#else
 
 int mALLOPt(param_number, value) int param_number; int value;
 
 			#endif
 
 {
 
 			  mstate av = &main_arena;
 
 int res = 1;
 
 
 
 if(__malloc_initialized < 0)
 
 			    ptmalloc_init ();
 
 (void)mutex_lock(&av->mutex);
 
 /* Ensure initialization/consolidation */
 
 			  malloc_consolidate(av);
 
 
 
 			  switch(param_number) {
 
 case M_MXFAST:
 
 if (value >= 0 && value <= MAX_FAST_SIZE) {
 
 			      set_max_fast(value);
 
 }
 
 else
 
 			      res = 0;
 
 			    break;
 
 
 
 case M_TRIM_THRESHOLD:
 
 			    mp_.trim_threshold = value;
 
 			    mp_.no_dyn_threshold = 1;
 
 			    break;
 
 
 
 case M_TOP_PAD:
 
 			    mp_.top_pad = value;
 
 			    mp_.no_dyn_threshold = 1;
 
 			    break;
 
 
 
 case M_MMAP_THRESHOLD:
 
 			#if USE_ARENAS
 
 /* Forbid setting the threshold too high. */
 
 if((unsigned long)value > HEAP_MAX_SIZE/2)
 
 			      res = 0;
 
 else
 
 			#endif
 
 			      mp_.mmap_threshold = value;
 
 			      mp_.no_dyn_threshold = 1;
 
 			    break;
 
 
 
 case M_MMAP_MAX:
 
 			#if !HAVE_MMAP
 
 if (value != 0)
 
 			      res = 0;
 
 else
 
 			#endif
 
 			      mp_.n_mmaps_max = value;
 
 			      mp_.no_dyn_threshold = 1;
 
 			    break;
 
 
 
 case M_CHECK_ACTION:
 
 			    check_action = value;
 
 			    break;
 
 
 
 case M_PERTURB:
 
 			    perturb_byte = value;
 
 			    break;
 
 
 
 			#ifdef PER_THREAD
 
 case M_ARENA_TEST:
 
 if (value > 0)
 
 			      mp_.arena_test = value;
 
 			    break;
 
 
 
 case M_ARENA_MAX:
 
 if (value > 0)
 
 			      mp_.arena_max = value;
 
 			    break;
 
 			#endif
 
 }
 
 (void)mutex_unlock(&av->mutex);
 
 			  return res;
 
 }
 
 
 
 
 
 /*
 
 -------------------- Alternative MORECORE functions --------------------
 
 */
 
 
 
 
 
 /*
 
 			  General Requirements for MORECORE.
 
 
 
 			  The MORECORE function must have the following properties:
 
 
 
 If MORECORE_CONTIGUOUS is false:
 
 
 
 * MORECORE must allocate in multiples of pagesize. It will
 
 			      only be called with arguments that are multiples of pagesize.
 
 
 
 * MORECORE(0) must return an address that is at least
 
 			      MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
 
 
 
 else (i.e. If MORECORE_CONTIGUOUS is true):
 
 
 
 * Consecutive calls to MORECORE with positive arguments
 
 			      return increasing addresses, indicating that space has been
 
 			      contiguously extended.
 
 
 
 * MORECORE need not allocate in multiples of pagesize.
 
 			      Calls to MORECORE need not have args of multiples of pagesize.
 
 
 
 * MORECORE need not page-align.
 
 
 
 In either case:
 
 
 
 * MORECORE may allocate more memory than requested. (Or even less,
 
 			      but this will generally result in a malloc failure.)
 
 
 
 * MORECORE must not allocate memory when given argument zero, but
 
 			      instead return one past the end address of memory from previous
 
 			      nonzero call. This malloc does NOT call MORECORE(0)
 
 until at least one call with positive arguments is made, so
 
 			      the initial value returned is not important.
 
 
 
 * Even though consecutive calls to MORECORE need not return contiguous
 
 			      addresses, it must be OK for malloc'ed chunks to span multiple
 
 			      regions in those cases where they do happen to be contiguous.
 
 
 
 * MORECORE need not handle negative arguments -- it may instead
 
 			      just return MORECORE_FAILURE when given negative arguments.
 
 			      Negative arguments are always multiples of pagesize. MORECORE
 
 			      must not misinterpret negative args as large positive unsigned
 
 			      args. You can suppress all such calls from even occurring by defining
 
 			      MORECORE_CANNOT_TRIM,
 
 
 
 			  There is some variation across systems about the type of the
 
 			  argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
 
 			  actually be size_t, because sbrk supports negative args, so it is
 
 			  normally the signed type of the same width as size_t (sometimes
 
 			  declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
 
 			  matter though. Internally, we use "long" as arguments, which should
 
 			  work across all reasonable possibilities.
 
 
 
 			  Additionally, if MORECORE ever returns failure for a positive
 
 			  request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
 
 			  system allocator. This is a useful backup strategy for systems with
 
 			  holes in address spaces -- in this case sbrk cannot contiguously
 
 			  expand the heap, but mmap may be able to map noncontiguous space.
 
 
 
 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
 
 			  a function that always returns MORECORE_FAILURE.
 
 
 
 If you are using this malloc with something other than sbrk (or its
 
 			  emulation) to supply memory regions, you probably want to set
 
 			  MORECORE_CONTIGUOUS as false. As an example, here is a custom
 
 			  allocator kindly contributed for pre-OSX macOS. It uses virtually
 
 			  but not necessarily physically contiguous non-paged memory (locked
 
 in, present and won't get swapped out). You can use it by
 
 			  uncommenting this section, adding some #includes, and setting up the
 
 			  appropriate defines above:
 
 
 
 			      #define MORECORE osMoreCore
 
 			      #define MORECORE_CONTIGUOUS 0
 
 
 
 			  There is also a shutdown routine that should somehow be called for
 
 			  cleanup upon program exit.
 
 
 
 			  #define MAX_POOL_ENTRIES 100
 
 			  #define MINIMUM_MORECORE_SIZE (64 * 1024)
 
 			  static int next_os_pool;
 
 			  void *our_os_pools[MAX_POOL_ENTRIES];
 
 
 
 			  void *osMoreCore(int size)
 
 {
 
 			    void *ptr = 0;
 
 			    static void *sbrk_top = 0;
 
 
 
 if (size > 0)
 
 {
 
 if (size < MINIMUM_MORECORE_SIZE)
 
 			     size = MINIMUM_MORECORE_SIZE;
 
 if (CurrentExecutionLevel() == kTaskLevel)
 
 			     ptr = PoolAllocateResident(size   RM_PAGE_SIZE, 0);
 
 if (ptr == 0)
 
 {
 
 			    return (void *) MORECORE_FAILURE;
 
 }
 
 // save ptrs so they can be freed during cleanup
 
 			      our_os_pools[next_os_pool] = ptr;
 
 			      next_os_pool  ;
 
 			      ptr = (void *) ((((unsigned long) ptr)   RM_PAGE_MASK) & ~RM_PAGE_MASK);
 
 			      sbrk_top = (char *) ptr   size;
 
 			      return ptr;
 
 }
 
 else if (size < 0)
 
 {
 
 // we don't currently support shrink behavior
 
 			      return (void *) MORECORE_FAILURE;
 
 }
 
 else
 
 {
 
 			      return sbrk_top;
 
 }
 
 }
 
 
 
 // cleanup any allocated memory pools
 
 // called as last thing before shutting down driver
 
 
 
 			  void osCleanupMem(void)
 
 {
 
 			    void **ptr;
 
 
 
 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr  )
 
 if (*ptr)
 
 {
 
 			     PoolDeallocate(*ptr);
 
 *ptr = 0;
 
 }
 
 }
 
 
 
 */
 
 
 
 
 
 /* Helper code. */
 
 
 
 			extern char **__libc_argv attribute_hidden;
 
 
 
 			static void
 
 			malloc_printerr(int action, const char *str, void *ptr)
 
 {
 
 if ((action & 5) == 5)
 
 			    __libc_message (action & 2, "%sn", str);
 
 else if (action & 1)
 
 {
 
 			      char buf[2 * sizeof (uintptr_t)   1];
 
 
 
 			      buf[sizeof (buf) - 1] = '';
 
 			      char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
 
 while (cp > buf)
 
 *--cp = '0';
 
 
 
 			      __libc_message (action & 2,
 
 "*** glibc detected *** %s: %s: 0x%s ***n",
 
 			              __libc_argv[0] ?: "<unknown>", str, cp);
 
 }
 
 else if (action & 2)
 
 			    abort ();
 
 }
 
 
 
 			#ifdef _LIBC
 
 			# include <sys/param.h>
 
 
 
 /* We need a wrapper function for one of the additions of POSIX. */
 
 int
 
 			__posix_memalign (void **memptr, size_t alignment, size_t size)
 
 {
 
 			  void *mem;
 
 
 
 /* Test whether the SIZE argument is valid. It must be a power of
 
 			     two multiple of sizeof (void *). */
 
 if (alignment % sizeof (void *) != 0
 
 || !powerof2 (alignment / sizeof (void *)) != 0
 
 || alignment == 0)
 
 			    return EINVAL;
 
 
 
 /* Call the hook here, so that caller is posix_memalign's caller
 
 and not posix_memalign itself. */
 
 			  __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
 
 			                    __const __malloc_ptr_t)) =
 
 			    force_reg (__memalign_hook);
 
 if (__builtin_expect (hook != NULL, 0))
 
 			    mem = (*hook)(alignment, size, RETURN_ADDRESS (0));
 
 else
 
 			    mem = public_mEMALIGn (alignment, size);
 
 
 
 if (mem != NULL) {
 
 *memptr = mem;
 
 			    return 0;
 
 }
 
 
 
 			  return ENOMEM;
 
 }
 
 			weak_alias (__posix_memalign, posix_memalign)
 
 
 
 
 
 int
 
 			malloc_info (int options, FILE *fp)
 
 {
 
 /* For now, at least. */
 
 if (options != 0)
 
 			    return EINVAL;
 
 
 
 int n = 0;
 
 			  size_t total_nblocks = 0;
 
 			  size_t total_nfastblocks = 0;
 
 			  size_t total_avail = 0;
 
 			  size_t total_fastavail = 0;
 
 			  size_t total_system = 0;
 
 			  size_t total_max_system = 0;
 
 			  size_t total_aspace = 0;
 
 			  size_t total_aspace_mprotect = 0;
 
 
 
 			  void mi_arena (mstate ar_ptr)
 
 {
 
 			    fprintf (fp, "<heap nr="%d">n<sizes>n", n  );
 
 
 
 			    size_t nblocks = 0;
 
 			    size_t nfastblocks = 0;
 
 			    size_t avail = 0;
 
 			    size_t fastavail = 0;
 
 			    struct
 
 {
 
 			      size_t from;
 
 			      size_t to;
 
 			      size_t total;
 
 			      size_t count;
 
 } sizes[NFASTBINS   NBINS - 1];
 
 			#define nsizes (sizeof (sizes) / sizeof (sizes[0]))
 
 
 
 			    mutex_lock (&ar_ptr->mutex);
 
 
 
 for (size_t i = 0; i < NFASTBINS;   i)
 
 {
 
 			    mchunkptr p = fastbin (ar_ptr, i);
 
 if (p != NULL)
 
 {
 
 			        size_t nthissize = 0;
 
 			        size_t thissize = chunksize (p);
 
 
 
 while (p != NULL)
 
 {
 
   nthissize;
 
 			        p = p->fd;
 
 }
 
 
 
 			        fastavail  = nthissize * thissize;
 
 			        nfastblocks  = nthissize;
 
 			        sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
 
 			        sizes[i].to = thissize;
 
 			        sizes[i].count = nthissize;
 
 }
 
 else
 
 			      sizes[i].from = sizes[i].to = sizes[i].count = 0;
 
 
 
 			    sizes[i].total = sizes[i].count * sizes[i].to;
 
 }
 
 
 
 			    mbinptr bin = bin_at (ar_ptr, 1);
 
 			    struct malloc_chunk *r = bin->fd;
 
 if (r != NULL)
 
 {
 
 while (r != bin)
 
 {
 
   sizes[NFASTBINS].count;
 
 			        sizes[NFASTBINS].total  = r->size;
 
 			        sizes[NFASTBINS].from = MIN (sizes[NFASTBINS].from, r->size);
 
 			        sizes[NFASTBINS].to = MAX (sizes[NFASTBINS].to, r->size);
 
 			        r = r->fd;
 
 }
 
 			    nblocks  = sizes[NFASTBINS].count;
 
 			    avail  = sizes[NFASTBINS].total;
 
 }
 
 
 
 for (size_t i = 2; i < NBINS;   i)
 
 {
 
 			    bin = bin_at (ar_ptr, i);
 
 			    r = bin->fd;
 
 			    sizes[NFASTBINS - 1   i].from = ~((size_t) 0);
 
 			    sizes[NFASTBINS - 1   i].to = sizes[NFASTBINS - 1   i].total
 
 = sizes[NFASTBINS - 1   i].count = 0;
 
 
 
 if (r != NULL)
 
 while (r != bin)
 
 {
 
   sizes[NFASTBINS - 1   i].count;
 
 			          sizes[NFASTBINS - 1   i].total  = r->size;
 
 			          sizes[NFASTBINS - 1   i].from
 
 = MIN (sizes[NFASTBINS - 1   i].from, r->size);
 
 			          sizes[NFASTBINS - 1   i].to = MAX (sizes[NFASTBINS - 1   i].to,
 
 			                         r->size);
 
 
 
 			          r = r->fd;
 
 }
 
 
 
 if (sizes[NFASTBINS - 1   i].count == 0)
 
 			      sizes[NFASTBINS - 1   i].from = 0;
 
 			    nblocks  = sizes[NFASTBINS - 1   i].count;
 
 			    avail  = sizes[NFASTBINS - 1   i].total;
 
 }
 
 
 
 			    mutex_unlock (&ar_ptr->mutex);
 
 
 
 			    total_nfastblocks  = nfastblocks;
 
 			    total_fastavail  = fastavail;
 
 
 
 			    total_nblocks  = nblocks;
 
 			    total_avail  = avail;
 
 
 
 for (size_t i = 0; i < nsizes;   i)
 
 if (sizes[i].count != 0 && i != NFASTBINS)
 
 			    fprintf (fp, "
  
 			<size from="%zu" to="%zu" total="%zu" count="%zu"/>n",
 
 			         sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
 
 
 
 if (sizes[NFASTBINS].count != 0)
 
 			      fprintf (fp, "
  
 			<unsorted from="%zu" to="%zu" total="%zu" count="%zu"/>n",
 
 			           sizes[NFASTBINS].from, sizes[NFASTBINS].to,
 
 			           sizes[NFASTBINS].total, sizes[NFASTBINS].count);
 
 
 
 			    total_system  = ar_ptr->system_mem;
 
 			    total_max_system  = ar_ptr->max_system_mem;
 
 
 
 			    fprintf (fp,
 
 "</sizes>n<total type="fast" count="%zu" size="%zu"/>n"
 
 "<total type="rest" count="%zu" size="%zu"/>n"
 
 "<system type="current" size="%zu"/>n"
 
 "<system type="max" size="%zu"/>n",
 
 			         nfastblocks, fastavail, nblocks, avail,
 
 			         ar_ptr->system_mem, ar_ptr->max_system_mem);
 
 
 
 if (ar_ptr != &main_arena)
 
 {
 
 			    heap_info *heap = heap_for_ptr(top(ar_ptr));
 
 			    fprintf (fp,
 
 "<aspace type="total" size="%zu"/>n"
 
 "<aspace type="mprotect" size="%zu"/>n",
 
 			         heap->size, heap->mprotect_size);
 
 			    total_aspace  = heap->size;
 
 			    total_aspace_mprotect  = heap->mprotect_size;
 
 }
 
 else
 
 {
 
 			    fprintf (fp,
 
 "<aspace type="total" size="%zu"/>n"
 
 "<aspace type="mprotect" size="%zu"/>n",
 
 			         ar_ptr->system_mem, ar_ptr->system_mem);
 
 			    total_aspace  = ar_ptr->system_mem;
 
 			    total_aspace_mprotect  = ar_ptr->system_mem;
 
 }
 
 
 
 			    fputs ("</heap>n", fp);
 
 }
 
 
 
 if(__malloc_initialized < 0)
 
 			    ptmalloc_init ();
 
 
 
 			  fputs ("<malloc version="1">n", fp);
 
 
 
 /* Iterate over all arenas currently in use. */
 
 			  mstate ar_ptr = &main_arena;
 
 do
 
 {
 
 			      mi_arena (ar_ptr);
 
 			      ar_ptr = ar_ptr->next;
 
 }
 
 while (ar_ptr != &main_arena);
 
 
 
 			  fprintf (fp,
 
 "<total type="fast" count="%zu" size="%zu"/>n"
 
 "<total type="rest" count="%zu" size="%zu"/>n"
 
 "<system type="current" size="%zu"/>n"
 
 "<system type="max" size="%zu"/>n"
 
 "<aspace type="total" size="%zu"/>n"
 
 "<aspace type="mprotect" size="%zu"/>n"
 
 "</malloc>n",
 
 			       total_nfastblocks, total_fastavail, total_nblocks, total_avail,
 
 			       total_system, total_max_system,
 
 			       total_aspace, total_aspace_mprotect);
 
 
 
 			  return 0;
 
 }
 
 
 
 
 
 			strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
 
 			strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
 
 			strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
 
 			strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
 
 			strong_alias (__libc_memalign, __memalign)
 
 			weak_alias (__libc_memalign, memalign)
 
 			strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
 
 			strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
 
 			strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
 
 			strong_alias (__libc_mallinfo, __mallinfo)
 
 			weak_alias (__libc_mallinfo, mallinfo)
 
 			strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
 
 
 
 			weak_alias (__malloc_stats, malloc_stats)
 
 			weak_alias (__malloc_usable_size, malloc_usable_size)
 
 			weak_alias (__malloc_trim, malloc_trim)
 
 			weak_alias (__malloc_get_state, malloc_get_state)
 
 			weak_alias (__malloc_set_state, malloc_set_state)
 
 
 
 			#endif /* _LIBC */
 
 
 
 /* ------------------------------------------------------------
 
 History:
 
 
 
 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
 
 
 
 */
 
 /*
 
 * Local variables:
 
 * c-basic-offset: 2
 
 * End:
 
 */ 

0 人点赞