loj#2049. 「HNOI2016」网络(set 树剖 暴力)

2019-03-15 16:10:12 浏览数 (1)

题意

题目链接

Sol

下面的代码是(O(nlog^3n))的暴力。

因为从一个点向上只会跳(logn)次,所以可以暴力的把未经过的处理出来然后每个点开个multiset维护最大值

代码语言:javascript复制
#include<bits/stdc  .h> 
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long 
#define LL long long 
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 2e5   10, SS = MAXN * 4, mod = 1e9   7, INF = 1e9   10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x   y < 0) return x   y   mod; return x   y >= mod ? x   y - mod : x   y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x   y < 0) x = x   y   mod; else x = (x   y >= mod ? x   y - mod : x   y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod   mod) % mod;}
template <typename A> inline void debug(A a){cout << a << 'n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10   c - '0', c = getchar();
    return x * f;
}
int N, Q, fa[MAXN], siz[MAXN], son[MAXN], id[MAXN], top[MAXN], dep[MAXN], times;
vector<int> v[MAXN];
void dfs1(int x, int _fa) {
    siz[x] = 1; dep[x] = dep[_fa]   1; fa[x] = _fa;
    for(auto &to : v[x]) {
        if(to == _fa) continue;
        dfs1(to, x);
        siz[x]  = siz[to];
        if(siz[to] > siz[son[x]]) son[x] = to;
    }
}
void dfs2(int x, int topf) {
    top[x] = topf; id[x] =   times;
    if(!son[x]) return ;
    dfs2(son[x], topf);
    for(auto &to : v[x]) {
        if(top[to]) continue;
        dfs2(to, to);
    }
}
multiset<int> s[SS];
struct Query {
    int a, b, v;
}q[MAXN];
vector<Pair> line[MAXN];
int ls[SS], rs[SS], root, tot;
void Erase(multiset<int> &s, int v) {
    auto it = s.find(v);
    if(it != s.end()) s.erase(it);
}
void Get(vector<Pair> &v, int x, int y) {
    vector<Pair> tmp;
    while(top[x] ^ top[y]) {
        if(dep[top[x]] < dep[top[y]]) swap(x, y);
        tmp.push_back({id[top[x]], id[x]});
        x = fa[top[x]];
    }
    if(dep[x] > dep[y]) swap(x, y);
    tmp.push_back({id[x], id[y]});
    sort(tmp.begin(), tmp.end());
    int las = 1;
    for(auto x : tmp) {
        if(las <= x.fi - 1) v.push_back({las, x.fi - 1});
        las = x.se   1;
    }
    if(las <= N) v.push_back({las, N});
}

int Mx(multiset<int> &s) {
    if(s.empty()) return -1;
    auto it = s.end(); it--;
    return *it;
}
void IntAdd(int &k, int l, int r, int ql, int qr, int v, int opt) {
    if(!k) k =   tot;
    if(ql <= l && r <= qr) {
        if(opt == 1) s[k].insert(v); 
        else Erase(s[k], v);
        return ;
    }
    int mid = l   r >> 1;
    if(ql <= mid) IntAdd(ls[k], l, mid, ql, qr, v, opt);
    if(qr  > mid) IntAdd(rs[k], mid   1, r, ql, qr, v, opt);
}
int Query(int k, int l, int r, int p) {
    if(!k) return -1;
    int ans = Mx(s[k]), mid = l   r >> 1;
    if(l == r) return Mx(s[k]);
    if(p <= mid) chmax(ans, Query(ls[k], l, mid, p));
    else chmax(ans, Query(rs[k], mid   1, r, p));
    return ans;
}
void TreeAdd(int x, int y, int v, int opt) {
    while(top[x] ^ top[y]) {
        if(dep[top[x]] < dep[top[y]]) swap(x, y);
        IntAdd(root, 1, N, id[top[x]], id[x], v, opt);
        x = fa[top[x]];
    }
    if(dep[x] > dep[y]) swap(x, y);
    IntAdd(root, 1, N, id[x], id[y], v, opt);
}
void Add(int ti, int opt) {
    int x = q[ti].a, y = q[ti].b, v = q[ti].v;
    if(opt == 1) Get(line[ti], x, y);
    for(auto x : line[ti]) 
        IntAdd(root, 1, N, x.fi, x.se, v, opt);
}
signed main() {
//  Fin(a); Fout(b);
    N = read(); Q = read();
    for(int i = 1; i <= N - 1; i  ) {
        int x = read(), y = read();
        v[x].push_back(y);
        v[y].push_back(x);
    }
    dfs1(1, 0);
    dfs2(1, 1);
    for(int i = 1; i <= Q; i  ) {
        int opt = read();
        if(opt == 0) {
            int a = read(), b = read(), v = read(); q[i] = {a, b, v};
            Add(i, 1); 
        } else if(opt == 1) {
            int ti = read();
            Add(ti, -1); 
        } else if(opt == 2) {
            int x = read();
            printf("%dn", Query(root, 1, N, id[x]));
        }
    }
    return 0;
}

0 人点赞