Scrapy介绍
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。抓取网页的一般方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。
Scrapy 使用 Twisted这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。
整体架构
- 引擎(Scrapy Engine),用来处理整个系统的数据流处理,触发事务。
- 调度器(Scheduler),用来接受引擎发过来的请求,压入队列中,并在引擎再次请求的时候返回。
- 下载器(Downloader),用于下载网页内容,并将网页内容返回给蜘蛛。
- 蜘蛛(Spiders),蜘蛛是主要干活的,用它来制订特定域名或网页的解析规则。编写用于分析response并提取item(即获取到的item)或额外跟进的URL的类。 每个spider负责处理一个特定(或一些)网站。
- 项目管道(Item Pipeline),负责处理有蜘蛛从网页中抽取的项目,他的主要任务是清晰、验证和存储数据。当页面被蜘蛛解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
- 下载器中间件(Downloader Middlewares),位于Scrapy引擎和下载器之间的钩子框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
- 蜘蛛中间件(Spider Middlewares),介于Scrapy引擎和蜘蛛之间的钩子框架,主要工作是处理蜘蛛的响应输入和请求输出。 调度中间件(Scheduler Middlewares),介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
爬取流程
上图绿线是数据流向,首先从初始URL开始,Scheduler会将其交给Downloader进行下载,下载之后会交给Spider进行分析,Spider分析出来的结果有两种:一种是需要进一步抓取的链接,例如之前分析的“下一页”的链接,这些东西会被传回Scheduler;另一种是需要保存的数据,它们则被送到Item Pipeline那里,那是对数据进行后期处理(详细分析、过滤、存储等)的地方。另外,在数据流动的通道里还可以安装各种中间件,进行必要的处理。
数据流
Scrapy中的数据流由执行引擎控制,其过程如下:
- 引擎打开一个网站(open a domain),找到处理该网站的Spider并向该spider请求第一个要爬取的URL(s)。
- 引擎从Spider中获取到第一个要爬取的URL并在调度器(Scheduler)以Request调度。
- 引擎向调度器请求下一个要爬取的URL。
- 调度器返回下一个要爬取的URL给引擎,引擎将URL通过下载中间件(请求(request)方向)转发给下载器(Downloader)。
- 一旦页面下载完毕,下载器生成一个该页面的Response,并将其通过下载中间件(返回(response)方向)发送给引擎。
- 引擎从下载器中接收到Response并通过Spider中间件(输入方向)发送给Spider处理。
- Spider处理Response并返回爬取到的Item及(跟进的)新的Request给引擎。
- 引擎将(Spider返回的)爬取到的Item给Item Pipeline,将(Spider返回的)Request给调度器。
- (从第二步)重复直到调度器中没有更多地request,引擎关闭该网站。
Scrapy项目基本流程
默认的Scrapy项目结构
使用全局命令startproject创建项目,在project_name文件夹下创建一个名为project_name的Scrapy项目。
代码语言:javascript复制scrapy startproject myproject
虽然可以被修改,但所有的Scrapy项目默认有类似于下边的文件结构:
代码语言:javascript复制scrapy.cfg
myproject/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
spider1.py
spider2.py
...
scrapy.cfg 存放的目录被认为是 项目的根目录 。该文件中包含python模块名的字段定义了项目的设置。
定义要抓取的数据
Item 是保存爬取到的数据的容器;其使用方法和python字典类似, 并且提供了额外保护机制来避免拼写错误导致的未定义字段错误。
类似在ORM中做的一样,您可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field 的类属性来定义一个Item。
首先根据需要从dmoz.org(DMOZ网站是一个著名的开放式分类目录(Open DirectoryProject),由来自世界各地的志愿者共同维护与建设的最大的全球目录社区)获取到的数据对item进行建模。 我们需要从dmoz中获取名字,url,以及网站的描述。 对此,在item中定义相应的字段。编辑items.py 文件:
代码语言:javascript复制import scrapy
class DmozItem(scrapy.Item):
title = scrapy.Field()
link = scrapy.Field()
desc = scrapy.Field()
使用项目命令genspider创建Spider
代码语言:javascript复制scrapy genspider <创建spider的名称> <抓取网址的域名>
使用项目命令genspider创建深度爬虫Spider
代码语言:javascript复制scrapy genspider -t crawl <创建spider的名称> <抓取网址的域名>
编写提取item数据的Spider
Spider是用户编写用于从单个网站(或者一些网站)爬取数据的类。 其包含了一个用于下载的初始URL,如何跟进网页中的链接以及如何分析页面中的内容, 提取生成 item 的方法。 为了创建一个Spider,您必须继承 scrapy.Spider 类,且定义以下三个属性:
- name: 用于区别Spider。 该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。
- start_urls: 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
- parse() 是spider的一个方法。 被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。
import scrapy
class DmozSpider(scrapy.spider.Spider):
name = "dmoz" #唯一标识,启动spider时即指定该名称
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]
def parse(self, response):
filename = response.url.split("/")[-2]
with open(filename, 'wb') as f:
f.write(response.body)
进行爬取
执行项目命令crawl,启动Spider:
scrapy crawl dmoz
在这个过程中:
- Scrapy为Spider的 start_urls 属性中的每个URL创建了 scrapy.Request 对象,并将 parse 方法作为回调函数(callback)赋值给了Request。
- Request对象经过调度,执行生成 scrapy.http.Response 对象并送回给spider parse() 方法。
通过选择器提取数据
Selectors选择器简介: Scrapy提取数据有自己的一套机制。它们被称作选择器(seletors),因为他们通过特定的 XPath 或者 CSS 表达式来“选择” HTML文件中的某个部分。 XPath 是一门用来在XML文件中选择节点的语言,也可以用在HTML上。 CSS 是一门将HTML文档样式化的语言。选择器由它定义,并与特定的HTML元素的样式相关连。
Selector有四个基本的方法(点击相应的方法可以看到详细的API文档):
- xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表 。
- css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表.
- extract(): 序列化该节点为unicode字符串并返回list。
- re(): 根据传入的正则表达式对数据进行提取,返回unicode字符串list列表。
XPath表达式的例子和含义:
- /html/head/title: 选择HTML文档中 标签内的 元素
- /html/head/title/text(): 选择上面提到的 元素的文字
- //td: 选择所有的 元素
- //div[@class=”mine”]: 选择所有具有 class=”mine” 属性的 div 元素
提取数据: 观察HTML源码并确定合适的XPath表达式。 在查看了网页的源码后,您会发现网站的信息是被包含在 第二个元素中。 我们可以通过这段代码选择该页面中网站列表里所有元素:response.xpath(‘//ul/li’)
Item 对象是自定义的python字典。 您可以使用标准的字典语法来获取到其每个字段的值。
一般来说,Spider将会将爬取到的数据以 Item 对象返回。所以为了将爬取的数据返回,我们最终的代码将是:
代码语言:javascript复制import scrapy
from tutorial.items import DmozItem
class DmozSpider(scrapy.Spider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]
def parse(self, response):
for sel in response.xpath('//ul/li'):
item = DmozItem()
item['title'] = sel.xpath('a/text()').extract()
item['link'] = sel.xpath('a/@href').extract()
item['desc'] = sel.xpath('text()').extract()
yield item
现在对dmoz.org进行爬取将会产生 DmozItem 对象。
保存数据
最简单存储爬取的数据的方式是使用 Feed exports:
scrapy crawl dmoz -o items.json
该命令将采用 JSON 格式对爬取的数据进行序列化,生成 items.json 文件。 如果需要对爬取到的item做更多更为复杂的操作,您可以编写 Item Pipeline 。类似于我们在创建项目时对Item做的,用于您编写自己的 tutorial/pipelines.py 也被创建。不过如果您仅仅想要保存item,您不需要实现任何的pipeline。
参考资料
Scrapy架构概览 初窥Scrapy Scrapy入门教程
Windows平台安装Scrapy的特别要求
安装Scrapy之前需要安装以下软件
- 安装Python2.7
- 安装pywin32(2.7版本)
- 安装pip 安装pip的时候,如果用户名是中文,这里会出错,找到Python安装路径里的Lib,里面的site-packages,新建一个sitecumtomize.py文件,在文件中写入 import sys sys.setdefaultencoding('gb2312')
- 安装lxml 安装过程如果出现问题,用lxml安装包安装lxml-3.4.2.win32-py2.7.exe
- 安装pyOpenSSL pip install pyOpenSSL安装
- 安装Scrapy pip install Scrapy安装