高清图解:神经网络、机器学习、数据科学一网打尽|附PDF

2019-05-17 11:48:01 浏览数 (1)

今天要为大家推荐一个超实用、颜值超高的神经网络 机器学习 数据科学和Python的完全图解,文末附有高清PDF版链接,支持下载、打印,推荐大家可以做成鼠标垫、桌布,或者印成手册等随手携带,随时翻看。

这是一份非常详实的备忘单,涉及具体内容包括:

  1. 神经网络基础知识
  2. 神经网络图谱
  3. 机器学习基础知识
  4. 著名Python库Scikit-Learn
  5. Scikit-Learn算法
  6. 机器学习算法选择指南
  7. TensorFlow
  8. Python基础
  9. PySpark基础
  10. Numpy基础
  11. Bokeh
  12. Keras
  13. Pandas
  14. 使用Pandas进行Data Wrangling
  15. 使用dplyr和tidyr进行Data Wrangling
  16. SciPi
  17. MatPlotLib
  18. 使用ggplot进行数据可视化
  19. Big-O

神经网络Cheat Sheet

神经网络基础知识

人工神经网络(ANN),俗称神经网络,是一种基于生物神经网络结构和功能的计算模型。 它就像一个人工神经系统,用于接收,处理和传输计算机科学方面的信息。

基本上,神经网络中有3个不同的层:

  • 输入层(所有输入都通过该层输入模型)
  • 隐藏层(可以有多个隐藏层用于处理从输入层接收的输入)
  • 输出层(处理后的数据在输出层可用)

神经网络图谱

图形数据可以与很多学习任务一起使用,在元素之间包含很多丰富的关联数据。例如,物理系统建模、预测蛋白质界面,以及疾病分类,都需要模型从图形输入中学习。图形推理模型还可用于学习非结构性数据,如文本和图像,以及对提取结构的推理。

机器学习Cheat Sheet

用Emoji解释机器学习

Scikit-Learn基础

Scikit-learn是由Python第三方提供的非常强大的机器学习库,它包含了从数据预处理到训练模型的各个方面,回归和聚类算法,包括支持向量机,是一种简单有效的数据挖掘和数据分析工具。在实战使用scikit-learn中可以极大的节省代码时间和代码量。它基于NumPy,SciPy和matplotlib之上,采用BSD许可证。

Scikit-Learn算法

这张流程图非常清晰直观的给出了Scikit-Learn算法的使用指南。

针对Azure Machine Learning Studios的Scikit-Learn算法

被Python武装起来的数据科学Cheat Sheet

TensorFlow

Python基础

温馨提示,本图配合《100天从Python萌新到王者》食用,效果更佳。

PySpark RDD基础

Apache Spark是专为大规模数据处理而设计的快速通用的计算引擎,通过Scala语言实现,拥有Hadoop MapReduce所具有的优点,不同的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。PySpark是Spark 为 Python开发者提供的 API。

NumPy基础

NumPy是Python语言的一个扩展程序库。支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,前身Numeric,主要用于数组计算。它实现了在Python中使用向量和数学矩阵、以及许多用C语言实现的底层函数,并且速度得到了极大提升。

Bokeh

Bokeh是一个交互式可视化库,面向现代Web浏览器。目标是提供优雅、简洁的多功能图形构造,并通过非常大或流数据集的高性能交互来扩展此功能。Bokeh可以实现快速轻松地创建交互式图表、仪表板和数据应用程序。

Keras

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。

Pandas

pandas是一个为Python编程语言编写的软件库,用于数据操作和分析,基于NumPy,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量快速便捷地处理数据的函数和方法。

使用Pandas进行Data Wrangling

Data Wrangling通常被翻译成数据整理,这个词最开始火起来是因为2017年的电影《金刚·骷髅岛》,演员马克·埃文·杰克逊扮演的角色之一被介绍为“我们的Data Wrangler史蒂夫伍德沃德”。

使用ddyr和tidyr进行Data Wrangling

为什么使用tidyr和dplyr呢?因为虽然R中存在许多基本数据处理功能,但都有点复杂并且缺乏一致的编码,导致可读性很差的嵌套功能以及臃肿的代码。使用ddyr和tidyr可以获得:

  • 更高效的代码
  • 更容易记住的语法
  • 更好的语法可读性

Scipy线性代数

SciPy是一个开源的Python算法库和数学工具包。 SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。 与其功能相类似的软件还有MATLAB、GNU Octave和Scilab。

Matplotlib

Matplotlib是Python编程语言及其数值数学扩展包NumPy的可视化操作界面。 它为利用通用的图形用户界面工具包,如Tkinter, wxPython, Qt或GTK 向应用程序嵌入式绘图提供了应用程序接口(API)。

使用ggplot2进行数据可视化

Big-O

大O符号(英语:Big O notation),又稱為漸進符號,是用于描述函数渐近行为的数学符号。 更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。 ... 阶)的大O,最初是一个大写希腊字母“Ο”(omicron),现今用的是大写拉丁字母“O”。

PDF下载(或点击阅读原文链接):

https://cheatsheets.becominghumanai.com/

0 人点赞