翻出来了17年自己梳理的数据工程师的算法学习内容,当时的理解和现在会有些许不同,但整体来看还是可以的,有一些比较细节的内容并没有花较多的时间来整理,留待大家自己补充了,在此不再做任何修改分享给大家参考,也算是对当时思路的一种保留吧。
该图中包含的算法范围可能会比较广,当然大家在学习的时候也可以有所取舍,根据居士个人经验,简单举例说明一下几大块算法对数据工程师的重要性,或者说是学习建议吧:
- 分布式算法:大数据相关的同学必备,日常工作可能使用不多,但是遇到集群问题或者面试时,最好还是要做了解。
- 大数据算法:偏ETL和基于大数据平台开发的同学最好多做了解,现在很多大数据处理的背后都隐藏了这些大数据相关的算法,比如ES、Kylin、Hadoop。
- 数据结构:这里居士只列了图、树和一些高阶数据结构,有朋友问学算法在工作中到底有没有用,我可以很负责任地说,这一块是肯定有用的。
- 学习算法:数据挖掘相关的内容,学一下扩展自己技能是很有必要的,因为数据开发很可能会做数据挖掘相关的平台,比如广告系统、推荐系统、机器学习平台等。
- 其它算法:这里列了一些日常工作会遇到,但是一般不需要我们了解太深的算法,比如加密、压缩和调度算法,这些最好是有所了解知道不同算法的作用和区别,但是如果项目不太需要,不必学的特别深。
ok,大致就这些内容,如果此图对你有帮助,欢迎开启你的算法学习道路!