双端队列

2019-05-26 00:20:16 浏览数 (1)

挑战程序竞赛系列(56):4.4 双端队列(3)

方法1

起初用记忆化搜索来写,可以有如下定义f(i, t)表示当前位置下的最小代价,但同时还有前一轮带来的时间总和。

所以有如下代码:

代码语言:javascript复制
    public int f(int i, int t) {
        if (i >=  N) return 0;

        int cost = 0;
        int time = t   S;
        int res  = INF;
        for (int j = i; j < N;   j) {
            cost  = jobs[j].c;
            time  = jobs[j].t;
            res  =  Math.min(res, f(j   1, time)   cost * time);
        }
        return res;
    }

TLE,所以接着采用状态记忆,定义mem[i][t],呵呵,MLE。

看来只能找一维的dp了,不过此题很巧妙,可以观察下累加的时间代价:

代码语言:javascript复制
5 5 10 14 14
我们可以看成如下:

0 0 0   4     4
0 0 5   4 5   4 5
5 5 5 5 4 5 5 4 5 5

于是咱可以定义如下dp:
dp[i] 表示从i到N的最小代价

递推式如下:
dp[i] = min{dp[j]   (T[j] - T[i]   S) * (C[N] - C[i])} 

j > i && j <= N

T[i]表示时间累加和
C[i]表示代价累加和

不过照着它写依旧会超时,在hankcs博文里,指出一个批次最多不会超过200个任务,所以可以限制下搜索分支。

代码如下:

代码语言:javascript复制
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;

public class Main{

    String INPUT = "./data/judge/201709/P1180.txt";

    public static void main(String[] args) throws IOException {
        new Main().run();
    }

    static final int MAX_N = 10000   16;
    static final int INF   = 0x3f3f3f3f;

    int N, S;
    int[] dp = new int[MAX_N];

    class Job{
        int t;
        int c;
        public Job(int t, int c) {
            this.t = t;
            this.c = c;
        }
    }

    Job[] jobs;

    void solve() {
        N = ni();
        S = ni();
        jobs = new Job[N];
        for (int i = 0; i < N;   i) {
            jobs[i] = new Job(ni(), ni());
        }

        int[] C = new int[N   1];
        for (int i = 0; i < N;   i) {
            C[i   1] = C[i]   jobs[i].c;
        }

        Arrays.fill(dp, INF);
        dp[N] = 0;
        for (int i = N - 1; i >= 0; --i) { // 未知 求已知
            int cc = C[N] - C[i];
            int tt = S;
            for (int j = 1; j   i <= N && j <= 200;   j) {
                tt  = jobs[i   j - 1].t;
                dp[i] = Math.min(dp[i], tt * cc   dp[j   i]); // 有个技巧 和 求解思路在里头 ,主要观察 tt的 结构易知
            }
        }

        out.println(dp[0]);
    }

    FastScanner in;
    PrintWriter out;

    void run() throws IOException {
        boolean oj;
        try {
            oj = ! System.getProperty("user.dir").equals("F:\java_workspace\leetcode");
        } catch (Exception e) {
            oj = System.getProperty("ONLINE_JUDGE") != null;
        }

        InputStream is = oj ? System.in : new FileInputStream(new File(INPUT));
        in = new FastScanner(is);
        out = new PrintWriter(System.out);
        long s = System.currentTimeMillis();
        solve();
        out.flush();
        if (!oj){
            System.out.println("["   (System.currentTimeMillis() - s)   "ms]");
        }
    }

    public boolean more(){
        return in.hasNext();
    }

    public int ni(){
        return in.nextInt();
    }

    public long nl(){
        return in.nextLong();
    }

    public double nd(){
        return in.nextDouble();
    }

    public String ns(){
        return in.nextString();
    }

    public char nc(){
        return in.nextChar();
    }

    class FastScanner {
        BufferedReader br;
        StringTokenizer st;
        boolean hasNext;

        public FastScanner(InputStream is) throws IOException {
            br = new BufferedReader(new InputStreamReader(is));
            hasNext = true;
        }

        public String nextToken() {
            while (st == null || !st.hasMoreTokens()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (Exception e) {
                    hasNext = false;
                    return "##";
                }
            }
            return st.nextToken();
        }

        String next = null;
        public boolean hasNext(){
            next = nextToken();
            return hasNext;
        }

        public int nextInt() {
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return Integer.parseInt(more);
        }

        public long nextLong() {
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return Long.parseLong(more);
        }

        public double nextDouble() {
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return Double.parseDouble(more);
        }

        public String nextString(){
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return more;
        }

        public char nextChar(){
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return more.charAt(0);
        }
    }

    static class ArrayUtils {

        public static void fill(int[][] f, int value) {
            for (int i = 0; i < f.length;   i) {
                Arrays.fill(f[i], value);
            }
        }

        public static void fill(int[][][] f, int value) {
            for (int i = 0; i < f.length;   i) {
                fill(f[i], value);
            }
        }

        public static void fill(int[][][][] f, int value) {
            for (int i = 0; i < f.length;   i) {
                fill(f[i], value);
            }
        }
    }
}

方法2

嗯,此处是DP优化知识了,具体用到了凸包和斜率优化两个概念,第一次接触就说的详细点,自己也是恶补了一大段时间。

精髓就在这四句话,简单来说,min是一条条线段集合,而由于它的遍历结构很特殊,min中的线段是一条一条增加的,而每个时刻,我们只需要取最小即可,如果想办法能够把之前的状态记录下来,并维持有序就可以在常数时间内从集合中找出最小代价。

当然还有一点非常重要,虽然x在不断变化,但是x之前的系数,和之后的值只跟j相关,这就可以把它们看成一个个固定的点,而x变大or变小,并不影响最终的取值,既然如此,什么时候取到最小值?

可以想象这些点在空间中的二维分布,而在这些点中取得最小值,一定是已知斜率x,不断从负无穷上移碰到的第一个点,所以这里就有了决策点的冗余,只需要维护一个包络就ok了。

这里点的坐标为:(−aj,dp[j]−S[j] aj×j)(-a_j, dp[j] - S[j] a_j times j),观察得到−aj-a_j是个单调函数,于是咱们就可以利用双端队列去构造包络,此处是凸包的相关知识(其中的一种构造凸包方法就是利用有序的横坐标or有序的纵坐标)

注意两点:

  • 头部元素不是最小删除(可能是因为斜率的单调性)
  • 尾部元素不可能成为最小删除(这是因为固定斜率下取最小值,不取凸包内部的点,属于冗余信息)

很多细节问题,上凸下凸,斜率单调递增or单调递减,不动点是否有序,还需勤加练习。

针对此题开始构建:

代码语言:javascript复制
dp[i] = min{dp[j]   (T[j] - T[i]   S) * (C[N] - C[i])} 

移项:
dp[i] = (C[N] - C[i]) * (S - T[i]) 
  min{dp[j]   C[N] * T[j] - C[i] * T[j]}

确定不动点:
(-T[j], dp[j]   C[N] * T[j])

好了,代码如下:

代码语言:javascript复制
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;

public class Main{

    String INPUT = "./data/judge/201709/P1180.txt";

    public static void main(String[] args) throws IOException {
        new Main().run();
    }

    static final int MAX_N = 10000   16;
    static final int INF   = 0x3f3f3f3f;

    int N, S;
    int[] T;
    int[] C;
    int[] time;
    int[] cost;
    int[] dp;
    int[] deq;

    void solve() {
        N = ni();
        S = ni();
        time = new int[N];
        cost = new int[N];
        for (int i = 0; i < N;   i) {
            time[i] = ni();
            cost[i] = ni();
        }

        T = new int[N   1];
        C = new int[N   1];
        for (int i = 0; i < N;   i) {
            T[i   1] = T[i]   time[i];
            C[i   1] = C[i]   cost[i];
        }

        dp = new int[MAX_N];
        deq = new int[MAX_N];
        Arrays.fill(dp, INF);

        int s = 0, t = 1;
        dp[N] = 0;
        deq[0] = N;
        for (int i = N - 1; i >= 0; --i) {
            while (t - s > 1 && f(i, deq[s]) >= f(i, deq[s   1])) s  ;
            dp[i] = f(i, deq[s]);
            while (t - s > 1 && check(deq[t - 2], deq[t - 1], i)) t--;
            deq[t  ] = i;
        }

        out.println(dp[0]);
    }

    public int f(int i, int j) {
        return (C[N] - C[i]) * (S - T[i])   dp[j]   C[N] * T[j] - C[i] * T[j];
    }

    public boolean check(int f1, int f2, int f3) {
        long a1 = -T[f1], b1 = dp[f1]   T[f1] * C[N];
        long a2 = -T[f2], b2 = dp[f2]   T[f2] * C[N];
        long a3 = -T[f3], b3 = dp[f3]   T[f3] * C[N];
        return (a2 - a1) * (b3 - b2) <= (b2 - b1) * (a3 - a2);
    }



    FastScanner in;
    PrintWriter out;

    void run() throws IOException {
        boolean oj;
        try {
            oj = ! System.getProperty("user.dir").equals("F:\java_workspace\leetcode");
        } catch (Exception e) {
            oj = System.getProperty("ONLINE_JUDGE") != null;
        }

        InputStream is = oj ? System.in : new FileInputStream(new File(INPUT));
        in = new FastScanner(is);
        out = new PrintWriter(System.out);
        long s = System.currentTimeMillis();
        solve();
        out.flush();
        if (!oj){
            System.out.println("["   (System.currentTimeMillis() - s)   "ms]");
        }
    }

    public boolean more(){
        return in.hasNext();
    }

    public int ni(){
        return in.nextInt();
    }

    public long nl(){
        return in.nextLong();
    }

    public double nd(){
        return in.nextDouble();
    }

    public String ns(){
        return in.nextString();
    }

    public char nc(){
        return in.nextChar();
    }

    class FastScanner {
        BufferedReader br;
        StringTokenizer st;
        boolean hasNext;

        public FastScanner(InputStream is) throws IOException {
            br = new BufferedReader(new InputStreamReader(is));
            hasNext = true;
        }

        public String nextToken() {
            while (st == null || !st.hasMoreTokens()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (Exception e) {
                    hasNext = false;
                    return "##";
                }
            }
            return st.nextToken();
        }

        String next = null;
        public boolean hasNext(){
            next = nextToken();
            return hasNext;
        }

        public int nextInt() {
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return Integer.parseInt(more);
        }

        public long nextLong() {
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return Long.parseLong(more);
        }

        public double nextDouble() {
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return Double.parseDouble(more);
        }

        public String nextString(){
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return more;
        }

        public char nextChar(){
            if (next == null){
                hasNext();
            }
            String more = next;
            next = null;
            return more.charAt(0);
        }
    }

    static class ArrayUtils {

        public static void fill(int[][] f, int value) {
            for (int i = 0; i < f.length;   i) {
                Arrays.fill(f[i], value);
            }
        }

        public static void fill(int[][][] f, int value) {
            for (int i = 0; i < f.length;   i) {
                fill(f[i], value);
            }
        }

        public static void fill(int[][][][] f, int value) {
            for (int i = 0; i < f.length;   i) {
                fill(f[i], value);
            }
        }
    }
}

0 人点赞