挑战程序竞赛系列(23):3.2折半枚举

2019-05-26 09:24:27 浏览数 (2)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://cloud.tencent.com/developer/article/1434642

挑战程序竞赛系列(23):3.2折半枚举

详细代码可以fork下Github上leetcode项目,不定期更新。

练习题如下:

  • POJ 2785: 4 Values whose Sum is 0
  • POJ 3977: Subsets
  • POJ 2549: Sumsets

POJ 2785: 4 Values whose Sum is 0

基本想法:

全部枚举,判断sum == 0,时间复杂度为O(n4)O(n^4),优化,折半枚举。

确定sum意味着给定两个组合,另外一半也将确定,所以可以给出任意两个元素的所有组合,进行折半搜索。sum = a b,a确定b跟着确定,这是折半的核心思想。这样b的搜索可以采用二分。

总的来说,sum并不关系每个独立的个体具体是什么值,它只关心总和是否等于算,所以sum = a b c d和sum = (a b) (c d),对于sum来说没有区别。既然无区别,干嘛要用独立性如此高的算法O(n4)O(n^4)来实现呢?

当(a b)看成整体后,它的搜索成本自然就下去了。

代码如下:

代码语言:javascript复制
    void solve() {
        int n = ni();
        int[] A = new int[n];
        int[] B = new int[n];
        int[] C = new int[n];
        int[] D = new int[n];
        for (int i = 0; i < n;   i){
            A[i] = ni();
            B[i] = ni();
            C[i] = ni();
            D[i] = ni();
        }

        int[] arra = new int[n * n];
        for (int i = 0, k = 0; i < n;   i){
            for (int j = 0; j < n;   j){
                arra[k  ] = C[i]   D[j];
            }
        }
        Arrays.sort(arra);

        long cnt = 0;
        for (int i = 0; i < n;   i){
            for (int j = 0; j < n;   j){
                int key = -(A[i]   B[j]);
                int lo = lowBound(arra, key);
                int hi = upBound(arra, key);
                if (lo == -1 || hi == -1) continue;
                cnt  = (hi - lo   1);
            }
        }
        out.println(cnt);
    }

    private int lowBound(int[] arra, int key){
        int lf = 0, rt = arra.length - 1;
        while (lf < rt){
            int mid = lf   (rt - lf) / 2;
            if (arra[mid] < key) lf = mid   1;
            else rt = mid;
        }
        if (arra[rt] == key) return rt;
        return -1;
    }

    private int upBound(int[] arra, int key){
        int lf = 0, rt = arra.length - 1;
        while (lf < rt){
            int mid = lf   (rt - lf   1) / 2;
            if (arra[mid] > key) rt = mid - 1;
            else lf = mid;
        }
        if (arra[lf] == key) return lf;
        return -1;
    }

POJ 3977: Subsets

全部枚举需要O(2n)O(2^n)次方,OJ不让过,所以可以采用折半的思路,此题和上题相似,无非由于子集的个数不确定,所以有sum = a b c …这种情况,且sum不是固定的值,而是尽可能接近0,天啊噜,改了20多次,依旧WA。

思路:

对数据进行划分,分成n/2和n - n/2的两个子集,分别对子集中的所有可能组合枚举,分别得到两个sum1和sum2,令sum1 sum2尽可能的接近0,所以只要针对某个sum集合进行排序,二分。

  • 用二分法逼近答案,因为可能会有多解的情况
  • 所以需要进行两次,第一次寻找最接近0的负值,第二次寻找最接近0的正值。
  • 然后扫描这两者之间的所有元素,找出sum最小,且count最小的组合

自己代码如下:

代码语言:javascript复制
    public static void main(String[] args) throws NumberFormatException, IOException {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        while (true) {
            int n = new Integer(br.readLine());
            if (n == 0) break;
            long[] arra = new long[n];

            String input[] = br.readLine().split("\s");
            for (int i = 0; i < n; i  ) {
                arra[i] = new Long(input[i]);
            }

            long[] LL = new long[n];
            long[] RR = new long[n];
            int LN = 0, RN = 0;

            for (int i = 0; i < n; i  = 2) {
                LL[LN  ] = arra[i];
                if (i   1 < n)
                    RR[RN  ] = arra[i   1];
            }

            if (RN == 0) {
                System.out.println(LL[0]   " "   1);
                continue;
            }

            Sum[] sums = new Sum[1 << RN];
            for (int i = 0; i < 1 << RN;   i) {
                long sum = 0;
                int cnt = 0;
                for (int j = 0; j < RN;   j) {
                    if ((i & (1 << j)) != 0) {
                        sum  = RR[j];
                        cnt  ;
                    }
                }
                sums[i] = new Sum(sum, cnt);
            }
            Arrays.sort(sums);

            long ans = 1000000000000001l;
            int ansc = 36;
            for (int i = 0; i < 1 << LN;   i) {
                long key = 0;
                int cnt = 0;
                for (int j = 0; j < LN;   j) {
                    if ((i & (1 << j)) != 0) {
                        key  = LL[j];
                        cnt  ;
                    }
                }

                int l = 0;
                int r = sums.length;
                while (r - l > 1) {
                    int m = (l   r) / 2;
                    if (sums[m].sum   key >= 0) {
                        r = m;
                    } else {
                        l = m;
                    }
                }
                int L = l;
                l = -1;
                r = sums.length - 1;
                while (r - l > 1) {
                    int m = (l   r) / 2;
                    if (sums[m].sum   key > 0) {
                        r = m;
                    } else {
                        l = m;
                    }
                }
                int R = r;
                for(int k = L; k <= R;   k){
                    long tempsum = Math.abs(sums[k].sum   key);
                    int tempcount = sums[k].cnt   cnt;
                    if (tempcount == 0) continue;

                    if(tempsum < ans){
                        ans = tempsum;
                        ansc = tempcount;
                    }
                    else if(tempsum == ans & tempcount < ansc){
                        ansc = tempcount;
                    }
                }
            }
            System.out.println(ans   " "   ansc);
        }
    }

WA到心碎,正确代码可以参考http://poj.org/showmessage?message_id=346495

POJ 2549: Sumsets

思路:

a b = d - c,所以把等式两边表示出来用个二分就解决了,一开始二分(a b),但枚举(d-c)需要的次数较大,所以二分(d-c),枚举(a b),此时只需要n⋅(n−1)/2n cdot (n - 1) / 2次的二分查询,勉强过了。前者TLE了。

代码如下:

代码语言:javascript复制
    void solve() {
        while (true){
            int n = ni();
            if (n == 0) break;
            long[] arra = new long[n];
            Map<Long, Integer> map = new HashMap<Long, Integer>();
            for (int i = 0; i < n;   i){
                arra[i] = nl();
                if (!map.containsKey(arra[i])){
                    map.put(arra[i], 0);
                }
                map.put(arra[i], map.get(arra[i])   1);
            }

            TwoSum[] sums = new TwoSum[n * n];
            for (int i = 0; i < sums.length;   i){
                sums[i] = new TwoSum(Long.MAX_VALUE, -1, -1);
            }

            int N = 0;
            for (int i = 0; i < n;   i){
                if (map.get(arra[i]) != 1) continue;
                for (int j = 0; j < n;   j){
                    if (i == j) continue;
                    sums[N  ] = new TwoSum(arra[i] - arra[j], i, j);
                }
            }
            Arrays.sort(sums);
            long max = Long.MIN_VALUE;

            for (int i = 0; i < n;   i){
                for (int j = i   1; j < n;   j){
                    long key = arra[i]   arra[j];
                    int lo = loBound(sums, N, key);
                    int hi = upBound(sums, N, key);
                    if (lo == -1 || hi == -1) continue;
                    for (int l = lo; l <= hi;   l){
                        TwoSum sum = sums[l];
                        if (sum.i == i || sum.j == i || sum.i ==j || sum.j == j) continue;
                        max = Math.max(arra[sum.i], max);
                    }
                }
            }

            if (max == Long.MIN_VALUE) out.println("no solution");
            else out.println(max);

        }
    }

    public int upBound(TwoSum[] sums, int len, long key){
        int lf = 0, rt = len - 1;
        while (lf < rt){
            int mid = lf   (rt - lf   1) / 2;
            if (sums[mid].sum > key) rt = mid - 1;
            else lf = mid;
        }
        if (sums[lf].sum == key) return lf;
        return -1;
    }

    public int loBound(TwoSum[] sums, int len, long key){
        int lf = 0, rt = len - 1;
        while (lf < rt){
            int mid = lf   (rt - lf) / 2;
            if (sums[mid].sum < key) lf = mid   1;
            else rt = mid;
        }
        if (sums[rt].sum == key) return rt;
        return -1;
    }

    class TwoSum implements Comparable<TwoSum>{
        long sum;
        int i;
        int j;

        public TwoSum(long sum, int i, int j) {
            this.sum = sum;
            this.i = i;
            this.j = j;
        }

        @Override
        public String toString() {
            return ""   sum;
        }

        @Override
        public int compareTo(TwoSum o) {
            return this.sum < o.sum ? -1 : 1;
        }
    }

0 人点赞