版权声明:本文为博主原创文章,未经博主允许不得转载。 https://cloud.tencent.com/developer/article/1434706
挑战程序竞赛系列(39):4.1模运算的世界(2)
详细代码可以fork下Github上leetcode项目,不定期更新。
练习题如下:
- POJ 1284: Primitive Roots
POJ 1284: Primitive Roots
欧拉函数这东西我只知道一个定义:
欧拉函数的值等于不超过m并且和m互素的个数。
表达式如下:
ϕ(m)=m×∏ipi−1pi
phi(m) = m times prod_{i} {frac{p_i - 1}{p_i}}
其中m=pe11pe22⋯perrm = p_1^{e_1}p_2^{e_2}cdots p_r^{e_r},当然我们可以简单证明下,只说一些思路。
首先,如果m是素数,可以直接得到ϕ(m)=m−1phi(m) = m - 1,进一步得,mkm^k的欧拉值为ϕ(mk)=mk−mk−1phi(m^k) = m^k - m^{k - 1},令p = m,p为素数,于是得:
ϕ(p)=p−1ϕ(pk)=pk−pk−1
phi(p) = p - 1 phi(p^k) = p^k - p^{k-1}
有了这两条定理,我们只需要证明欧拉函数满足乘性函数即可,具体可以参考《初等数论及其应用》P175页。
此题,则用到了《初等》P249,定理9.5
定理:如果p有原根,则它恰有φ(φ(p))个不同的原根(无论p是否为素数都适用) p为素数,当然φ(p)=p-1,因此就有φ(p-1)个原根
欧拉函数的实现参考《挑战》P292,经历了三个版本。
代码如下:
代码语言:javascript复制import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main{
String INPUT = "./data/judge/201708/P1284.txt";
public static void main(String[] args) throws IOException {
new Main().run();
}
void solve() {
while (more()){
int P = ni();
out.println(euler_phi1(P - 1));
}
}
// public int euler_phi(int n){ // n * (pi - 1) / pi = n / pi * (pi - 1)
// int res = n;
// while (n > 1){
// for (int i = 2; i <= n; i){
// if (n % i == 0){
// res = res / i * (i - 1);
// while (n % i == 0){
// n /= i;
// }
// }
// }
// }
// return res;
// }
public int euler_phi1(int n){ // n * (pi - 1) / pi = n / pi * (pi - 1)
int res = n;
for (int i = 2; i <= n / i; i){
if (n % i == 0){
res = res / i * (i - 1);
while (n % i == 0) n /= i;
}
}
if (n != 1) res = res / n * (n - 1);
return res;
}
int MAX_N = 65536 16;
int[] euler;
public void euler_phi2(){ //如果是素数 欧拉函数为 p - 1
euler = new int[MAX_N];
for (int i = 0; i < MAX_N; i) euler[i] = i;
for (int i = 2; i < MAX_N; i){
if (euler[i] == i){
for (int j = i; j < MAX_N; j = i){
euler[j] = euler[j] / i * (i - 1); //
}
}
}
}
FastScanner in;
PrintWriter out;
void run() throws IOException {
boolean oj;
try {
oj = ! System.getProperty("user.dir").equals("F:\java_workspace\leetcode");
} catch (Exception e) {
oj = System.getProperty("ONLINE_JUDGE") != null;
}
InputStream is = oj ? System.in : new FileInputStream(new File(INPUT));
in = new FastScanner(is);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if (!oj){
System.out.println("[" (System.currentTimeMillis() - s) "ms]");
}
}
public boolean more(){
return in.hasNext();
}
public int ni(){
return in.nextInt();
}
public long nl(){
return in.nextLong();
}
public double nd(){
return in.nextDouble();
}
public String ns(){
return in.nextString();
}
public char nc(){
return in.nextChar();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
boolean hasNext;
public FastScanner(InputStream is) throws IOException {
br = new BufferedReader(new InputStreamReader(is));
hasNext = true;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
hasNext = false;
return "##";
}
}
return st.nextToken();
}
String next = null;
public boolean hasNext(){
next = nextToken();
return hasNext;
}
public int nextInt() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Integer.parseInt(more);
}
public long nextLong() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Long.parseLong(more);
}
public double nextDouble() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Double.parseDouble(more);
}
public String nextString(){
if (next == null){
hasNext();
}
String more = next;
next = null;
return more;
}
public char nextChar(){
if (next == null){
hasNext();
}
String more = next;
next = null;
return more.charAt(0);
}
}
}
打表快点,但对内存要求高。