LWC 73: 790. Domino and Tromino Tiling

2019-05-26 09:41:31 浏览数 (1)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://cloud.tencent.com/developer/article/1434715

LWC 73: 790. Domino and Tromino Tiling

传送门:790. Domino and Tromino Tiling

Problem:

We have two types of tiles: a 2x1 domino shape, and an “L” tromino shape. These shapes may be rotated. XX <- domino XX <- “L” tromino X Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 7. (In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.)

Example:

Input: 3 Output: 5 Explanation:undefined The five different ways are listed below, different letters indicates different tiles: XYZ XXZ XYY XXY XYY XYZ YYZ XZZ XYY XXY

Note:

  • N will be in range 1, 1000.

思路:

动态规划,切分子问题。比如考虑N等于1可能出现的状态:

从上至下对应状态为0, 1, 2, 3,因此可以得到N=2时,每个状态的转移方程:

代码语言:javascript复制
dp[i][0] = dp[i - 1][0]   dp[i - 1][3]   dp[i - 2][1]   dp[i - 2][2]
dp[i][1] = dp[i - 1][0]   dp[i - 1][2]
dp[i][2] = dp[i - 1][0]   dp[i - 1][1]
dp[i][3] = dp[i - 1][0]

代码如下:

代码语言:javascript复制
    public int numTilings(int N) {
        long[][] dp = new long[N 1][4];
        int mod = 1000000007;
        dp[1][0] = 1;
        dp[1][1] = 1;
        dp[1][2] = 1;
        dp[1][3] = 1;
        for (int i = 2; i <= N;   i) {
            dp[i][0] = (dp[i - 1][0]   dp[i - 1][3]   dp[i - 2][1]   dp[i - 2][2]) % mod;
            dp[i][1] = (dp[i - 1][0]   dp[i - 1][2]) % mod;
            dp[i][2] = (dp[i - 1][0]   dp[i - 1][1]) % mod;
            dp[i][3] = dp[i - 1][0] % mod;
        }
        return (int)dp[N][0];
    }

Python版本:

代码语言:javascript复制
class Solution(object):
    def numTilings(self, N):
        """
        :type N: int
        :rtype: int
        """
        dp = [[0] * 4 for _ in range(N   1)]
        mod = 1000000007
        dp[1][0] = dp[1][1] = dp[1][2] = dp[1][3] = 1
        for i in range(2, N   1):
            dp[i][0] = (dp[i - 1][0]   dp[i - 1][3]   dp[i - 2][1]   dp[i - 2][2]) % mod
            dp[i][1] = (dp[i - 1][0]   dp[i - 1][2]) % mod
            dp[i][2] = (dp[i - 1][0]   dp[i - 1][1]) % mod
            dp[i][3] = dp[i - 1][0] % mod
        return dp[N][0]

0 人点赞