AlexNet 网络结构:
VGG : conv3x3、conv5x5、conv7x7、conv9x9和conv11x11,在224x224x3的RGB图上(设置pad=1,stride=4,output_channel=96)做卷积,卷积层的参数规模和得到的feature map的大小如下:
卷积神经网络基本计算原理 http://m.elecfans.com/article/691826.html
大卷积核带来的特征图和卷积核的参数量并不大,无论大的卷积核还是小的,对参数量来说影响不大甚至持平;增大的反而是卷积的计算量。同样stride下,不同卷积核大小的特征图和卷积参数差别不大;越大的卷积核计算量越大。
2个3x3的卷积堆叠获得的感受野大小,相当1层5x5的卷积;而3层的3x3卷积堆叠获取到的感受野相当于一个7x7的卷积
小卷积核比用大卷积核的三点优势:更多的激活函数、更丰富的特征,更强的辨别能力,卷积后都伴有激活函数,更多的卷积核的使用可使决策函数更加具有辨别能力,此外就卷积本身的作用而言,3x3比7x7就足以捕获特征的变化:3x3的9个格子,最中间的格子是一个感受野中心,可以捕获上下左右以及斜对角的特征变化。主要在于3个堆叠起来后,三个3x3近似一个7x7,网络深了两层且多出了两个非线性ReLU函数,(特征多样性和参数参数量的增大)使得网络容量更大(关于model capacity,AlexNet的作者认为可以用模型的深度和宽度来控制capacity),对于不同类别的区分能力更强(此外,从模型压缩角度也是要摒弃7x7,用更少的参数获得更深更宽的网络,也一定程度代表着模型容量,后人也认为更深更宽比矮胖的网络好);
内核大小为1x1的卷积
上面是一个 1x1 卷积核的输出示意图, 如果是 K 个1x1 卷积核,那么 结果就是 将通道数由 D 变为 K 降维或升维
特征通道数变化: 256 —> 64 —> 256
VGG比较神奇的一个特点就是“全连接转卷积”