如何使用Supervisor
在不使用Supervisor
的时候,我们的代码经常是这么组织的
variables
...
ops
...
summary_op
...
merge_all_summarie
saver
init_op
with tf.Session() as sess:
writer = tf.tf.train.SummaryWriter()
sess.run(init)
saver.restore()
for ...:
train
merged_summary = sess.run(merge_all_summarie)
writer.add_summary(merged_summary,i)
saver.save
下面介绍如何用Supervisor
来改写上面程序
import tensorflow as tf
a = tf.Variable(1)
b = tf.Variable(2)
c = tf.add(a,b)
update = tf.assign(a,c)
tf.scalar_summary("a",a)
init_op = tf.initialize_all_variables()
merged_summary_op = tf.merge_all_summaries()
sv = tf.train.Supervisor(logdir="/home/keith/tmp/",init_op=init_op) #logdir用来保存checkpoint和summary
saver=sv.saver #创建saver
with sv.managed_session() as sess: #会自动去logdir中去找checkpoint,如果没有的话,自动执行初始化
for i in xrange(1000):
update_ = sess.run(update)
print update_
if i % 10 == 0:
merged_summary = sess.run(merged_summary_op)
sv.summary_computed(sess, merged_summary,global_step=i)
if i0 == 0:
saver.save(sess,logdir="/home/keith/tmp/",global_step=i)
总结
从上面代码可以看出,Supervisor
帮助我们处理一些事情
(1)自动去checkpoint加载数据或初始化数据
(2)自身有一个Saver
,可以用来保存checkpoint
(3)有一个summary_computed
用来保存Summary
所以,我们就不需要:
(1)手动初始化或从checkpoint
中加载数据
(2)不需要创建Saver
,使用sv
内部的就可以
(3)不需要创建summary writer