上一篇文章总结了Keras的基本使用方法,相信用过的同学都会觉得不可思议,太简洁了。十多天前,我在github上发现这个框架的时候,关注Keras的人还比较少,这两天无论是github还是微薄,都看到越来越多的人关注和使用Keras。所以这篇文章就简单地再介绍一下Keras的使用,方便各位入门。
主要包括以下三个内容:
- 训练CNN并保存训练好的模型。
- 将CNN用于特征提取,用提取出来的特征训练SVM。
- 可视化CNN卷积层后的特征图。
仍然以Mnist为例,代码中用的Mnist数据到这里下载 http://pan.baidu.com/s/1qCdS6,本文的代码在我的github上:dive_into _keras
DeepLearning tutorial(7)深度学习框架Keras的使用-进阶
1. 加载数据
数据是图片格式,利用pyhton的PIL模块读取,并转为numpy.array类型。这部分的代码在data.py
里:
2. 训练CNN并保存训练好的CNN模型
将上一步加载进来的数据分为训练数据(X_train,30000个样本)和验证数据(X_val,12000个样本),构建CNN模型并训练。训练过程中,每一个epoch得到的val-accuracy都不一样,我们保存达到最好的val-accuracy时的模型,利用Python的cPickle模块保持。(Keras的开发者最近在添加用hdf5保持模型的功能,我试了一下,没用成功,去github发了issue也没人回,估计还没完善,hdf5压缩率会更高,保存下来的文件会更小。)
这部分的代码在cnn.py
里,运行:
<code class="hljs avrasm has-numbering" style="display: block; padding: 0px; background: transparent; color: inherit; box-sizing: border-box; font-family: "Source Code Pro", monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal;">python cnn<span class="hljs-preprocessor" style="color: rgb(68, 68, 68); box-sizing: border-box;">.py</span></code><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; background-color: rgb(238, 238, 238); top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right;"><li style="box-sizing: border-box; padding: 0px 5px;">1</li></ul><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; background-color: rgb(238, 238, 238); top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right;"><li style="box-sizing: border-box; padding: 0px 5px;">1</li></ul>
在第Epoch 4得到96.45%的validation accuracy,运行完后会得到model.pkl这份文件,保存的就是96.45%对应的模型:
3.将CNN用于特征提取,用提取出来的特征训练SVM
上一步得到了一个val-accuracy为96.45%的CNN模型,在一些论文中经常会看到用CNN的全连接层的输出作为特征,然后去训练其他分类器。这里我也试了一下,用全连接层的输出作为样本的特征向量,训练SVM。SVM用的是scikit learn里的算法。
这部分代码在cnn-svm.py
,运行:
<code class="hljs avrasm has-numbering" style="display: block; padding: 0px; background: transparent; color: inherit; box-sizing: border-box; font-family: "Source Code Pro", monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal;">python cnn-svm<span class="hljs-preprocessor" style="color: rgb(68, 68, 68); box-sizing: border-box;">.py</span></code><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; background-color: rgb(238, 238, 238); top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right;"><li style="box-sizing: border-box; padding: 0px 5px;">1</li></ul><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; background-color: rgb(238, 238, 238); top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right;"><li style="box-sizing: border-box; padding: 0px 5px;">1</li></ul>
得到下图的输出,可以看到,cnn-svm的准确率提高到97.89%:
4.可视化CNN卷积层后的特征图
将卷积层和全连接层后的特征图、特征向量以图片形式展示出来,用到matplotlib这个库。这部分代码在get_feature_map.py
里。运行:
<code class="hljs avrasm has-numbering" style="display: block; padding: 0px; background: transparent; color: inherit; box-sizing: border-box; font-family: "Source Code Pro", monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal;">python get_feature_map<span class="hljs-preprocessor" style="color: rgb(68, 68, 68); box-sizing: border-box;">.py</span></code><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; background-color: rgb(238, 238, 238); top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right;"><li style="box-sizing: border-box; padding: 0px 5px;">1</li></ul><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; background-color: rgb(238, 238, 238); top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right;"><li style="box-sizing: border-box; padding: 0px 5px;">1</li></ul>
得到全连接层的输出,以及第一个卷积层输出的4个特征图: