有5个基础的函数: - filter - select - arrange - mutate - summarise - group_by (plus)
可以和databases以及data tables中的数据打交道。
plyr包的特点
其基础函数有以下特点:
- 第一个参数df
- 返回df
- 没有数据更改in place
正是因为有这些特点,才可以使用%>%操作符,方便逻辑式编程。
载入数据
代码语言:javascript复制library(plyr)
library(dplyr)
# load packages
suppressMessages(library(dplyr))
install.packages("hflights")
library(hflights)
# explore data
data(hflights)
head(hflights)
# convert to local data frame
flights <- tbl_df(hflights)
# printing only shows 10 rows and as many columns as can fit on your screen
flights
# you can specify that you want to see more rows
print(flights, n=20)
# convert to a normal data frame to see all of the columns
data.frame(head(flights))
filter
代码语言:javascript复制keep rows matching criteria
# base R approach to view all flights on January 1
flights[flights$Month==1 & flights$DayofMonth==1, ]
# dplyr approach
# note: you can use comma or ampersand to represent AND condition
filter(flights, Month==1, DayofMonth==1)
# use pipe for OR condition
filter(flights, UniqueCarrier=="AA" | UniqueCarrier=="UA")
# you can also use %in% operator
filter(flights, UniqueCarrier %in% c("AA", "UA"))
select
代码语言:javascript复制pick columns by name
# base R approach to select DepTime, ArrTime, and FlightNum columns
flights[, c("DepTime", "ArrTime", "FlightNum")]
# dplyr approach
select(flights, DepTime, ArrTime, FlightNum)
# use colon to select multiple contiguous columns, and use `contains` to match columns by name
# note: `starts_with`, `ends_with`, and `matches` (for regular expressions) can also be used to match columns by name
select(flights, Year:DayofMonth, contains("Taxi"), contains("Delay"))
“chaining” or “pipelining”
代码语言:javascript复制# nesting method to select UniqueCarrier and DepDelay columns and filter for delays over 60 minutes
filter(select(flights, UniqueCarrier, DepDelay), DepDelay > 60)
# chaining method
flights %>%
select(UniqueCarrier, DepDelay) %>%
filter(DepDelay > 60)
# create two vectors and calculate Euclidian distance between them
x1 <- 1:5; x2 <- 2:6
sqrt(sum((x1-x2)^2))
# chaining method
(x1-x2)^2 %>% sum() %>% sqrt()
arrange
代码语言:javascript复制reorder rows
# base R approach to select UniqueCarrier and DepDelay columns and sort by DepDelay
flights[order(flights$DepDelay), c("UniqueCarrier", "DepDelay")]
# dplyr approach
flights %>%
select(UniqueCarrier, DepDelay) %>%
arrange(DepDelay)
# use `desc` for descending
flights %>%
select(UniqueCarrier, DepDelay) %>%
arrange(desc(DepDelay))
mutate
代码语言:javascript复制add new variable create new variables that are functions of exciting variables which is d ifferent form
transform
# base R approach to create a new variable Speed (in mph)
flights$Speed <- flights$Distance / flights$AirTime*60
flights[, c("Distance", "AirTime", "Speed")]
# dplyr approach (prints the new variable but does not store it)
flights %>%
select(Distance, AirTime) %>%
mutate(Speed = Distance/AirTime*60)
# store the new variable
flights <- flights %>% mutate(Speed = Distance/AirTime*60)
summarise
代码语言:javascript复制reduce variables to values
# base R approaches to calculate the average arrival delay to each destination
head(with(flights, tapply(ArrDelay, Dest, mean, na.rm=TRUE)))
head(aggregate(ArrDelay ~ Dest, flights, mean))
# dplyr approach: create a table grouped by Dest, and then summarise each group by taking the mean of ArrDelay
flights %>%
group_by(Dest) %>%
summarise(avg_delay = mean(ArrDelay, na.rm=TRUE))
#summarise_each allows you to apply the same summary function to multiple columns at once
#Note: mutate_each is also available
# for each carrier, calculate the percentage of flights cancelled or diverted
flights %>%
group_by(UniqueCarrier) %>%
summarise_each(funs(mean), Cancelled, Diverted)
# for each carrier, calculate the minimum and maximum arrival and departure delays
flights %>%
group_by(UniqueCarrier) %>%
summarise_each(funs(min(., na.rm=TRUE), max(., na.rm=TRUE)), matches("Delay"))
#Helper function n() counts the number of rows in a group
#Helper function n_distinct(vector) counts the number of unique items in that vector
# for each day of the year, count the total number of flights and sort in descending order
flights %>%
group_by(Month, DayofMonth) %>%
summarise(flight_count = n()) %>%
arrange(desc(flight_count))
# rewrite more simply with the `tally` function
flights %>%
group_by(Month, DayofMonth) %>%
tally(sort = TRUE)
# for each destination, count the total number of flights and the number of distinct planes that flew there
flights %>%
group_by(Dest) %>%
summarise(flight_count = n(), plane_count = n_distinct(TailNum))
# Grouping can sometimes be useful without summarising
# for each destination, show the number of cancelled and not cancelled flights
flights %>%
group_by(Dest) %>%
select(Cancelled) %>%
table() %>%
head()
Window Functions
- Aggregation function (like mean) takes n inputs and returns 1 value
- Window function takes n inputs and returns n values Includes ranking and ordering functions (like min_rank), offset functions (lead and lag), and cumulative aggregates (like cummean).
# for each carrier, calculate which two days of the year they had their longest departure delays
# note: smallest (not largest) value is ranked as 1, so you have to use `desc` to rank by largest value
flights %>%
group_by(UniqueCarrier) %>%
select(Month, DayofMonth, DepDelay) %>%
filter(min_rank(desc(DepDelay)) <= 2) %>%
arrange(UniqueCarrier, desc(DepDelay))
# rewrite more simply with the `top_n` function
flights %>%
group_by(UniqueCarrier) %>%
select(Month, DayofMonth, DepDelay) %>%
top_n(2,DepDelay) %>%
arrange(UniqueCarrier, desc(DepDelay))
# for each month, calculate the number of flights and the change from the previous month
flights %>%
group_by(Month) %>%
summarise(flight_count = n()) %>%
mutate(change = flight_count - lag(flight_count))
# rewrite more simply with the `tally` function
flights %>%
group_by(Month) %>%
tally() %>%
mutate(change = n - lag(n))
Other functions
代码语言:javascript复制# randomly sample a fixed number of rows, without replacement
flights %>% sample_n(5)
# randomly sample a fraction of rows, with replacement
flights %>% sample_frac(0.25, replace=TRUE)
# base R approach to view the structure of an object
str(flights)
# dplyr approach: better formatting, and adapts to your screen width
glimpse(flights)
Connecting Databases
- dplyr can connect to a database as if the data was loaded into a data frame
- Use the same syntax for local data frames and databases
- Only generates SELECT statements
- Currently supports SQLite, PostgreSQL/Redshift, MySQL/MariaDB, BigQuery, MonetDB
- Example below is based upon an SQLite database containing the hflights data
- Instructions for creating this database are in the databases vignette
# connect to an SQLite database containing the hflights data
my_db <- src_sqlite("my_db.sqlite3")
# connect to the "hflights" table in that database
flights_tbl <- tbl(my_db, "hflights")
# example query with our data frame
flights %>%
select(UniqueCarrier, DepDelay) %>%
arrange(desc(DepDelay))
# identical query using the database
flights_tbl %>%
select(UniqueCarrier, DepDelay) %>%
arrange(desc(DepDelay))
You can write the SQL commands yourself dplyr can tell you the SQL it plans to run and the query execution plan
代码语言:javascript复制# send SQL commands to the database
tbl(my_db, sql("SELECT * FROM hflights LIMIT 100"))
# ask dplyr for the SQL commands
flights_tbl %>%
select(UniqueCarrier, DepDelay) %>%
arrange(desc(DepDelay)) %>%
explain()
参考资料
- justmarkham的教程1
- justmarkdown的教程2