代码语言:javascript复制来自吴恩达深度学习视频作业四 assignment4_2 如果直接看代码对你来说有困难, 请移步: https://cloud.tencent.com/developer/article/1437368
import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
from dnn_app_utils_v2 import *
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
# Example of a picture
index = 7
plt.imshow(train_x_orig[index])
print ("y = " str(train_y[0,index]) ". It's a " classes[train_y[0,index]].decode("utf-8") " picture.")
代码语言:javascript复制# Explore your dataset
m_train = train_x_orig.shape[0]
num_px = train_x_orig.shape[1]
m_test = test_x_orig.shape[0]
print ("Number of training examples: " str(m_train))
print ("Number of testing examples: " str(m_test))
print ("Each image is of size: (" str(num_px) ", " str(num_px) ", 3)")
print ("train_x_orig shape: " str(train_x_orig.shape))
print ("train_y shape: " str(train_y.shape))
print ("test_x_orig shape: " str(test_x_orig.shape))
print ("test_y shape: " str(test_y.shape))
代码语言:javascript复制Number of training examples: 209
Number of testing examples: 50
Each image is of size: (64, 64, 3)
train_x_orig shape: (209, 64, 64, 3)
train_y shape: (1, 209)
test_x_orig shape: (50, 64, 64, 3)
test_y shape: (1, 50)
代码语言:javascript复制# Reshape the training and test examples
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
# Standardize data to have feature values between 0 and 1.
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.
print ("train_x's shape: " str(train_x.shape))
print ("test_x's shape: " str(test_x.shape))
代码语言:javascript复制train_x's shape: (12288, 209)
test_x's shape: (12288, 50)
代码语言:javascript复制### CONSTANTS DEFINING THE MODEL ####
n_x = 12288 # num_px * num_px * 3
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
代码语言:javascript复制# GRADED FUNCTION: two_layer_model
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
"""
Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
Arguments:
X -- input data, of shape (n_x, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- dimensions of the layers (n_x, n_h, n_y)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- If set to True, this will print the cost every 100 iterations
Returns:
parameters -- a dictionary containing W1, W2, b1, and b2
"""
np.random.seed(1)
grads = {}
costs = [] # to keep track of the cost
m = X.shape[1] # number of examples
(n_x, n_h, n_y) = layers_dims
# Initialize parameters dictionary, by calling one of the functions you'd previously implemented
### START CODE HERE ### (≈ 1 line of code)
parameters = initialize_parameters(n_x, n_h, n_y)
### END CODE HERE ###
# Get W1, b1, W2 and b2 from the dictionary parameters.
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".
### START CODE HERE ### (≈ 2 lines of code)
A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")
### END CODE HERE ###
# Compute cost
### START CODE HERE ### (≈ 1 line of code)
cost = compute_cost(A2, Y)
### END CODE HERE ###
# Initializing backward propagation
dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
# Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
### START CODE HERE ### (≈ 2 lines of code)
dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
### END CODE HERE ###
# Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
grads['dW1'] = dW1
grads['db1'] = db1
grads['dW2'] = dW2
grads['db2'] = db2
# Update parameters.
### START CODE HERE ### (approx. 1 line of code)
parameters = update_parameters(parameters, grads, learning_rate)
### END CODE HERE ###
# Retrieve W1, b1, W2, b2 from parameters
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" str(learning_rate))
plt.show()
return parameters
parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
代码语言:javascript复制Cost after iteration 0: 0.6930497356599888
Cost after iteration 100: 0.6464320953428849
Cost after iteration 200: 0.6325140647912677
Cost after iteration 300: 0.6015024920354665
Cost after iteration 400: 0.5601966311605747
Cost after iteration 500: 0.5158304772764729
Cost after iteration 600: 0.4754901313943325
Cost after iteration 700: 0.4339163151225749
Cost after iteration 800: 0.4007977536203887
Cost after iteration 900: 0.3580705011323798
Cost after iteration 1000: 0.3394281538366413
Cost after iteration 1100: 0.3052753636196264
Cost after iteration 1200: 0.2749137728213015
Cost after iteration 1300: 0.24681768210614832
Cost after iteration 1400: 0.1985073503746611
Cost after iteration 1500: 0.17448318112556657
Cost after iteration 1600: 0.1708076297809737
Cost after iteration 1700: 0.113065245621647
Cost after iteration 1800: 0.09629426845937152
Cost after iteration 1900: 0.08342617959726865
Cost after iteration 2000: 0.07439078704319085
Cost after iteration 2100: 0.06630748132267933
Cost after iteration 2200: 0.059193295010381744
Cost after iteration 2300: 0.053361403485605585
Cost after iteration 2400: 0.04855478562877018
代码语言:javascript复制predictions_train = predict(train_x, train_y, parameters)
代码语言:javascript复制Accuracy: 0.9999999999999998
代码语言:javascript复制predictions_test = predict(test_x, test_y, parameters)
代码语言:javascript复制Accuracy: 0.72
代码语言:javascript复制### CONSTANTS ###
layers_dims = [12288, 20, 7, 5, 1] # 5-layer model
# GRADED FUNCTION: L_layer_model
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
"""
Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
Arguments:
X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- list containing the input size and each layer size, of length (number of layers 1).
learning_rate -- learning rate of the gradient descent update rule
num_iterations -- number of iterations of the optimization loop
print_cost -- if True, it prints the cost every 100 steps
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
np.random.seed(1)
costs = [] # keep track of cost
# Parameters initialization.
### START CODE HERE ###
parameters = initialize_parameters_deep(layers_dims)
### END CODE HERE ###
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
### START CODE HERE ### (≈ 1 line of code)
AL, caches = L_model_forward(X, parameters)
### END CODE HERE ###
# Compute cost.
### START CODE HERE ### (≈ 1 line of code)
cost = compute_cost(AL, Y)
### END CODE HERE ###
# Backward propagation.
### START CODE HERE ### (≈ 1 line of code)
grads = L_model_backward(AL, Y, caches)
### END CODE HERE ###
# Update parameters.
### START CODE HERE ### (≈ 1 line of code)
parameters = update_parameters(parameters, grads, learning_rate)
### END CODE HERE ###
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" str(learning_rate))
plt.show()
return parameters
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
代码语言:javascript复制Cost after iteration 0: 0.695046
Cost after iteration 100: 0.589260
Cost after iteration 200: 0.523261
Cost after iteration 300: 0.449769
Cost after iteration 400: 0.420900
Cost after iteration 500: 0.372464
Cost after iteration 600: 0.347421
Cost after iteration 700: 0.317192
Cost after iteration 800: 0.266438
Cost after iteration 900: 0.219914
Cost after iteration 1000: 0.143579
Cost after iteration 1100: 0.453092
Cost after iteration 1200: 0.094994
Cost after iteration 1300: 0.080141
Cost after iteration 1400: 0.069402
Cost after iteration 1500: 0.060217
Cost after iteration 1600: 0.053274
Cost after iteration 1700: 0.047629
Cost after iteration 1800: 0.042976
Cost after iteration 1900: 0.039036
Cost after iteration 2000: 0.035683
Cost after iteration 2100: 0.032915
Cost after iteration 2200: 0.030472
Cost after iteration 2300: 0.028388
Cost after iteration 2400: 0.026615
代码语言:javascript复制pred_train = predict(train_x, train_y, parameters)
代码语言:javascript复制Accuracy: 0.9999999999999998
代码语言:javascript复制pred_test = predict(test_x, test_y, parameters)
代码语言:javascript复制Accuracy: 0.74
代码语言:javascript复制print_mislabeled_images(classes, test_x, test_y, pred_test)
作者给出了引起判断失误的原因类型,可以作为增加新特征或改进模型的依据。
A few type of images the model tends to do poorly on include:
- Cat body in an unusual position
- Cat appears against a background of a similar color
- Unusual cat color and species
- Camera Angle
- Brightness of the picture
- Scale variation (cat is very large or small in image)
## START CODE HERE ##
my_image = "my_image2.jpg" # change this to the name of your image file
my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
## END CODE HERE ##
fname = "images/" my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))
my_predicted_image = predict(my_image, my_label_y, parameters)
plt.imshow(image)
print ("y = " str(np.squeeze(my_predicted_image)) ", your L-layer model predicts a "" classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") "" picture.")
代码语言:javascript复制C:UserswanghAnaconda3libsite-packagesipykernel_launcher.py:7: DeprecationWarning: `imread` is deprecated!
`imread` is deprecated in SciPy 1.0.0.
Use ``matplotlib.pyplot.imread`` instead.
import sys
C:UserswanghAnaconda3libsite-packagesipykernel_launcher.py:8: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
Accuracy: 1.0
y = 1.0, your L-layer model predicts a "cat" picture.