1.all-分组-计数
计算每个 studymodel 下的商品数量
sql 语句: select studymodel,count(*) from book group by studymodel
代码语言:apl复制GET /book/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"group_by_model": {
"terms": { "field": "studymodel" }
}
}
}
2.分组-计数
计算每个 tags 下的商品数量
设置字段"fielddata": true,这个步骤很重要,不然会报错
在 es 中,text 类型的字段使用一种叫做 fielddata 的查询时内存数据结构。当字段被排序,聚合或者通过脚本访问时这种数据结构会被创建。它是通过从磁盘读取每个段的整个反向索引来构建的,然后存存储在 java 的堆内存中。
fileddata 默认是不开启的。Fielddata 可能会消耗大量的堆空间,尤其是在加载高基数文本字段时。一旦 fielddata 已加载到堆中,它将在该段的生命周期内保留。此外,加载 fielddata 是一个昂贵的过程,可能会导致用户遇到延迟命中。这就是默认情况下禁用 fielddata 的原因。如果尝试对文本字段进行排序,聚合或脚本访问,将看到以下异常:
“Fielddata is disabled on text fields by default. Set fielddata=true on your_field_name in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory.”
在启用 fielddata 之前,请考虑使用文本字段进行聚合,排序或脚本的原因。这样做通常没有意义。text 字段在索引例如 New York 这样的词会被分词,会被拆成 new,york。在此字段上面来一个 terms 的聚合会返回一个 new 的 bucket 和一个 york 的 bucket,当你想只返回一个 New York 的 bucket 的时候就会出现问题。
代码语言:apl复制PUT /book/_mapping/
{
"properties": {
"tags": {
"type": "text",
"fielddata": true
}
}
}
查询
代码语言:apl复制GET /book/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"group_by_tags": {
"terms": { "field": "tags" }
}
}
}
3.搜索-分组
加上搜索条件,计算每个 tags 下的商品数量
代码语言:apl复制GET /book/_search
{
"size": 0,
"query": {
"match": {
"description": "java程序员"
}
},
"aggs": {
"group_by_tags": {
"terms": { "field": "tags" }
}
}
}
4.分组-平均
先分组,再算每组的平均值,计算每个 tag 下的商品的平均价格
代码语言:apl复制GET /book/_search
{
"size": 0,
"aggs" : {
"group_by_tags" : {
"terms" : {
"field" : "tags"
},
"aggs" : {
"avg_price" : {
"avg" : { "field" : "price" }
}
}
}
}
}
5.分组-平均-排序
计算每个 tag 下的商品的平均价格,并且按照平均价格降序排序
代码语言:apl复制GET /book/_search
{
"size": 0,
"aggs" : {
"group_by_tags" : {
"terms" : {
"field" : "tags",
"order": {
"avg_price": "desc"
}
},
"aggs" : {
"avg_price" : {
"avg" : { "field" : "price" }
}
}
}
}
}
6.分组-分组-组内平均
按照指定的价格范围区间进行分组,然后在每组内再按照 tag 进行分组,最后再计算每组的平均价格
代码语言:apl复制GET /book/_search
{
"size": 0,
"aggs": {
"group_by_price": {
"range": {
"field": "price",
"ranges": [
{
"from": 0,
"to": 40
},
{
"from": 40,
"to": 60
},
{
"from": 60,
"to": 80
}
]
},
"aggs": {
"group_by_tags": {
"terms": {
"field": "tags"
},
"aggs": {
"average_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
Elasticsearch 的主要优点包括:
- 分布式设计:Elasticsearch 天然支持分布式,可以很容易地横向扩容,处理 PB 级结构化或非结构化数据。
- 高效的搜索能力:Elasticsearch 提供了全文搜索功能,支持模糊查询、前缀查询、通配符查询等,并且具有强大的聚合分析功能。
- 快速的查询速度:Elasticsearch 的底层使用 Lucene 作为搜索引擎,并在此之上做了多重优化,保证了用户对数据查询的需求。
- 易用性:Elasticsearch 提供了简单的 RESTful API,天生的兼容多语言开发,上手容易,开箱即用。
- 丰富的生态圈:Elasticsearch 有丰富的插件和工具,如 Logstash、Kibana、Beats 等,形成了强大的 Elastic Stack 生态。
Elasticsearch 的使用场景包括:
- 应用搜索:为网站或应用程序提供搜索功能,如电商、社交媒体等。
- 日志记录和日志分析:收集、存储和分析服务器日志、应用日志等。
- 基础设施监控:监控服务器、网络设备等基础设施的性能指标。
- 安全分析:分析安全日志,进行入侵检测和威胁分析。
- 地理位置数据分析:处理地理空间数据,提供地理位置搜索服务。
- 商业智能:对商业数据进行分析,提供决策支持。
Elasticsearch 的引入主要是为了应对大数据环境下的海量数据检索和实时分析需求,它通过分布式架构和高效的索引机制,提供了快速的搜索和分析能力。然而,Elasticsearch 也存在一些潜在风险,如响应时间问题和任务恢复延迟等,需要通过优化配置和维护来降低这些风险的影响。