通过一元线性回归模型理解梯度下降法

2018-12-04 15:39:11 浏览数 (1)

关于线性回归相信各位都不会陌生,当我们有一组数据(譬如房价和面积),我们输入到excel,spss等软件,我们很快就会得到一个拟合函数:

但我们有没有去想过,这个函数是如何得到的? 如果数学底子还不错的同学应该知道,当维数不多的时候,是可以通过正规方程法求得的,但如果维数过多的话,像图像识别/自然语言处理等领域,正规方程法就没法满足需求了,这时候便需要梯度下降法来实现了。

梯度下降法

首先我们需要知道一个概念

  • 损失函数(loss function)

损失函数是用来测量你的预测值

与实际值之间的不一致程度,我们需要做的就是找到一组

使得

最小,这组

便叫做全局最优解

图1

我们需要定义一个损失函数,在线性回归问题中我们一般选择平方误差代价函数

我们的目标是

如果不好理解的话我们通过图形来理解:

图2

假设上图是我们的

,那我们需要找到的就是左边箭头指向的那个点,这个点对应的

便是我们找的全局最优解,当然对于其他模型可能会存在局部最优解,譬如右边箭头指向的点,但是对于线性模型,只会存在全局最优解,真正的图像模型如下图所示,是个碗状的,我们要做的是找到碗底,这样是不是很好理解了。

图3

那么如何到达最底呢,我们再看一张图。

图四

我们需要从绿点到达红点,我们需要确定的有两件事情

  • 朝哪个方向走;
  • 走多远。

第一个问题,我们需要回忆下高中的数学知识——导数,在二维空间里面,导数是能代表函数上升下降快慢及方向的,这个各位在脑子里面想一个就明白,函数上升,导数为正,上升越快,导数越大,下降反之。扩展到多维空间,便是偏导数(

)。 第二个问题,走多远或者说步长,这里便需要我们自己定义,在梯度下降法中叫做学习率

。 接下来放公式:

这边就不推导了,偏导数自己也快忘记的差不多了,直接放结果:

接下来迭代去更新

直至收敛就好了。

python实现

我们通过

生成一些随机点,注意

并不是我们的最优解:

代码语言:javascript复制
# 以y= 2x 1为原型生成一个散点图
# 此时最优解并不是y = 2x 1
X0 = np.ones((100, 1))
X1 = np.random.random(100).reshape(100,1)
X = np.hstack((X0,X1))
y = np.zeros(100).reshape(100,1)
for i , x in enumerate(X1):
    val = x*2 1 random.uniform(-0.2,0.2)
    y[i] = val

plt.figure(figsize=(8,6))
plt.scatter(X1,y,color='g')
plt.plot(X1,X1*2 1,color='r',linewidth=2.5,linestyle='-')
plt.show()

out

图5

迭代部分:

代码语言:javascript复制
# 梯度下降法求最优解
def gradientDescent(X,Y,times = 1000, alpha=0.01):
    '''
    alpha:学习率,默认0.01
    times:迭代次数,默认1000次
    '''
    m = len(y)
    theta = np.array([1,1]).reshape(2, 1)
    loss = {}
    for i in range(times):
        diff = np.dot(X,theta)- y
        cost = (diff**2).sum()/(2.0*m)
        loss[i] = cost
        theta = theta - alpha*(np.dot(np.transpose(X), diff)/m)
    plt.figure(figsize=(8,6))
    plt.scatter(loss.keys(),loss.values(),color='r')
    plt.show()
    return theta

theta = gradientDescent(X,Y)

默认设置的迭代1000次,学习率为0.01,最后结果如下:

  • 损失函数

loss function

= 1.03229637, 1.95156735

我不是图5?

最后

网上介绍梯度下降法的文章很多,但很多的都是一脸懵逼?的点进去,然后一脸懵逼?的退出来,相比于那些copycopy去的文章,我还是尽量的加入了自己的理解,还是希望能各位带来点帮助?????? 还有尼玛数学公式真难打❗️❗️❗️

0 人点赞