1. linux优先级的表示
1.1 优先级的内核表示
linux优先级概述
在用户空间通过nice命令设置进程的静态优先级, 这在内部会调用nice系统调用, 进程的nice值在-20~ 19之间. 值越低优先级越高. setpriority系统调用也可以用来设置进程的优先级. 它不仅能够修改单个线程的优先级, 还能修改进程组中所有进程的优先级, 或者通过制定UID来修改特定用户的所有进程的优先级
内核使用一些简单的数值范围0~139表示内部优先级, 数值越低, 优先级越高。
从0~99的范围专供实时进程使用, nice的值[-20,19]则映射到范围100~139
linux2.6内核将任务优先级进行了一个划分, 实时优先级范围是0到MAX_RT_PRIO-1(即99),而普通进程的静态优先级范围是从MAX_RT_PRIO到MAX_PRIO-1(即100到139).
优先级范围 | 描述 |
---|---|
0——99 | 实时进程 |
100——139 | 非实时进程 |
内核的优先级表示
内核表示优先级的所有信息基本都放在include/linux/sched/prio.h中, 其中定义了一些表示优先级的宏和函数.
优先级数值通过宏来定义, 如下所示,
其中MAX_NICE和MIN_NICE定义了nice的最大最小值
而MAX_RT_PRIO指定了实时进程的最大优先级,而MAX_PRIO则是普通进程的最大优先级数值
代码语言:javascript复制/* http://lxr.free-electrons.com/source/include/linux/sched/prio.h?v=4.6#L4 */
#define MAX_NICE 19
#define MIN_NICE -20
#define NICE_WIDTH (MAX_NICE - MIN_NICE 1)
/* http://lxr.free-electrons.com/source/include/linux/sched/prio.h?v=4.6#L24 */
#define MAX_PRIO (MAX_RT_PRIO 40)
#define DEFAULT_PRIO (MAX_RT_PRIO 20)
宏 | 值 | 描述 |
---|---|---|
MIN_NICE | -20 | 对应于优先级100, 可以使用NICE_TO_PRIO和PRIO_TO_NICE转换 |
NICE_WIDTH | 40 | nice值得范围宽度, 即[-20, 19]共40个数字的宽度 |
MAX_RT_PRIO, MAX_USER_RT_PRIO | 10 0 | 实时进程的最大优先级 |
MAX_PRIO | 14 0 | 普通进程的最大优先级 |
DEFAULT_PRIO | 12 0 | 进程的默认优先级, 对应于nice=0 |
MAX_DL_PRIO | 0 | 使用EDF最早截止时间优先调度算法的实时进程最大的优先级 |
而内核提供了一组宏将优先级在各种不同的表示形之间转移
代码语言:javascript复制// http://lxr.free-electrons.com/source/include/linux/sched/prio.h?v=4.6#L27
/*
* Convert user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
* and back.
*/
#define NICE_TO_PRIO(nice) ((nice) DEFAULT_PRIO)
#define PRIO_TO_NICE(prio) ((prio) - DEFAULT_PRIO)
/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [ 0 ... 39 ] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
还有一些nice值和rlimit值之间相互转换的函数nice_to_rlimit和rlimit_to_nice, 这在nice系统调用进行检查的时候很有用, 他们定义在include/linux/sched/prio.h, L47中, 如下所示
代码语言:javascript复制/*
* Convert nice value [19,-20] to rlimit style value [1,40].
*/
static inline long nice_to_rlimit(long nice)
{
return (MAX_NICE - nice 1);
}
/*
* Convert rlimit style value [1,40] to nice value [-20, 19].
*/
static inline long rlimit_to_nice(long prio)
{
return (MAX_NICE - prio 1);
}
DEF最早截至时间优先实时调度算法的优先级描述
此外新版本的内核还引入了EDF实时调度算法, 它的优先级比RT进程和NORMAL/BATCH进程的优先级都要高, 关于EDF的优先级的设置信息都早内核头文件include/linux/sched/deadline.h
因此内核将MAX_DL_PRIO设置为0, 可以参见内核文件include/linux/sched/deadline.h
代码语言:javascript复制#define MAX_DL_PRIO 0
此外也提供了一些EDF优先级处理所需的函数, 如下所示, 可以参见内核文件include/linux/sched/deadline.h
代码语言:javascript复制static inline int dl_prio(int prio)
{
if (unlikely(prio < MAX_DL_PRIO))
return 1;
return 0;
}
static inline int dl_task(struct task_struct *p)
{
return dl_prio(p->prio);
}
static inline bool dl_time_before(u64 a, u64 b)
{
return (s64)(a - b) < 0;
}
1.2 进程的优先级表示
代码语言:javascript复制struct task_struct
{
/* 进程优先级
* prio: 动态优先级,范围为100~139,与静态优先级和补偿(bonus)有关
* static_prio: 静态优先级,static_prio = 100 nice 20 (nice值为-20~19,所以static_prio值为100~139)
* normal_prio: 没有受优先级继承影响的常规优先级,具体见normal_prio函数,跟属于什么类型的进程有关
*/
int prio, static_prio, normal_prio;
/* 实时进程优先级 */
unsigned int rt_priority;
}
动态优先级 静态优先级 实时优先级
其中task_struct采用了三个成员表示进程的优先级:prio和normal_prio表示动态优先级, static_prio表示进程的静态优先级.
为什么表示动态优先级需要两个值prio和normal_prio 调度器会考虑的优先级则保存在prio. 由于在某些情况下内核需要暂时提高进程的优先级, 因此需要用prio表示. 由于这些改变不是持久的, 因此静态优先级static_prio和普通优先级normal_prio不受影响.
此外还用了一个字段rt_priority保存了实时进程的优先级
字段 | 描述 |
---|---|
static_prio | 用于保存静态优先级, 是进程启动时分配的优先级, ,可以通过nice和sched_setscheduler系统调用来进行修改, 否则在进程运行期间会一直保持恒定 |
rt_priority | 用于保存实时优先级 |
normal_prio | 表示基于进程的静态优先级static_prio和调度策略计算出的优先级. 因此即使普通进程和实时进程具有相同的静态优先级, 其普通优先级也是不同的, 进程分叉(fork)时, 子进程会继承父进程的普通优先级 |
prio | 保存进程的动态优先级 |
实时进程的优先级用实时优先级rt_priority来表示
2 进程优先级的计算
前面说了task_struct中的几个优先级的字段
静态优先级 | 实时优先级 | 普通优先级 | 动态优先级 |
---|---|---|---|
static_prio | rt_priority | normal_prio | prio |
但是这些优先级是如何关联的呢, 动态优先级prio又是如何计算的呢?
2.1 normal_prio函数设置普通优先级normal_prio
静态优先级static_prio(普通进程)和实时优先级rt_priority(实时进程)是计算的起点
因此他们也是进程创建的时候设定好的, 我们通过nice修改的就是普通进程的静态优先级static_prio
首先通过静态优先级static_prio计算出普通优先级normal_prio, 该工作可以由nromal_prio来完成, 该函数定义在kernel/sched/core.c#L861
代码语言:javascript复制/*
* __normal_prio - return the priority that is based on the static prio
* 普通进程(非实时进程)的普通优先级normal_prio就是静态优先级static_prio
*/
static inline int __normal_prio(struct task_struct *p)
{
return p->static_prio;
}
/*
* Calculate the expected normal priority: i.e. priority
* without taking RT-inheritance into account. Might be
* boosted by interactivity modifiers. Changes upon fork,
* setprio syscalls, and whenever the interactivity
* estimator recalculates.
*/
static inline int normal_prio(struct task_struct *p)
{
int prio;
if (task_has_dl_policy(p)) /* EDF调度的实时进程 */
prio = MAX_DL_PRIO-1;
else if (task_has_rt_policy(p)) /* 普通实时进程的优先级 */
prio = MAX_RT_PRIO-1 - p->rt_priority;
else /* 普通进程的优先级 */
prio = __normal_prio(p);
return prio;
}
进程类型 | 调度器 | 普通优先级normal_prio |
---|---|---|
EDF实时进程 | EDF | MAX_DL_PRIO-1 = -1 |
普通实时进程 | RT | MAX_RT_PRIO-1 - p->rt_priority = 99 - rt_priority |
普通进程 | CFS | __normal_prio(p) = static_prio |
普通优先级normal_prio需要根据普通进程和实时进程进行不同的计算, 其中__normal_prio适用于普通进程, 直接将普通优先级normal_prio设置为静态优先级static_prio. 而实时进程的普通优先级计算依据其实时优先级rt_priority.
3.1.1 辅助函数task_has_dl_policy和task_has_rt_policy
定义在kernel/sched/sched.h#L117 中
其本质其实就是传入task->policy调度策略字段看其值等于SCHED_NORMAL, SCHED_BATCH, SCHED_IDLE, SCHED_FIFO, SCHED_RR, SCHED_DEADLINE中的哪个, 从而确定其所属的调度类, 进一步就确定了其进程类型
代码语言:javascript复制static inline int idle_policy(int policy)
{
return policy == SCHED_IDLE;
}
static inline int fair_policy(int policy)
{
return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}
static inline int rt_policy(int policy)
{
return policy == SCHED_FIFO || policy == SCHED_RR;
}
static inline int dl_policy(int policy)
{
return policy == SCHED_DEADLINE;
}
static inline bool valid_policy(int policy)
{
return idle_policy(policy) || fair_policy(policy) ||
rt_policy(policy) || dl_policy(policy);
}
static inline int task_has_rt_policy(struct task_struct *p)
{
return rt_policy(p->policy);
}
static inline int task_has_dl_policy(struct task_struct *p)
{
return dl_policy(p->policy);
}
2.1.2 关于rt_priority数值越大, 实时进程优先级越高的问题
我们前面提到了数值越小, 优先级越高, 但是此处我们会发现rt_priority的值越大, 其普通优先级越小, 从而优先级越高.
因此网上出现了一种说法, 优先级越高?这又是怎么回事?难道有一种说法错了吗?
实际的原因是这样的,对于一个实时进程,他有两个参数来表明优先级——prio 和 rt_priority,
prio才是调度所用的最终优先级数值,这个值越小,优先级越高;
而rt_priority 被称作实时进程优先级,他要经过转化——prio=MAX_RT_PRIO - 1- p->rt_priority;
MAX_RT_PRIO = 100, ;这样意味着rt_priority值越大,优先级越高;
而内核提供的修改优先级的函数,是修改rt_priority的值,所以越大,优先级越高。
所以用户在使用实时进程或线程,在修改优先级时,就会有“优先级值越大,优先级越高的说法”,也是对的。
2.1.3 为什么需要__normal_prio函数 我们肯定会奇怪, 为什么增加了一个__normal_prio函数做了这么简单的工作, 这个其实是有历史原因的: 在早期的o(1)调度器中, 普通优先级的计算涉及相当多技巧性地工作, 必须检测交互式进程并提高其优先级, 而必须”惩罚”非交互进程, 以便是得系统获得更好的交互体验. 这需要很多启发式的计算, 他们可能完成的很好, 也可能不工作
2.2 effective_prio函数设置动态优先级prio
可以通过函数effective_prio用静态优先级static_prio计算动态优先级prio, 即·
代码语言:javascript复制p->prio = effective_prio(p);
该函数定义在kernel/sched/core.c, line 861
代码语言:javascript复制/*
* Calculate the current priority, i.e. the priority
* taken into account by the scheduler. This value might
* be boosted by RT tasks, or might be boosted by
* interactivity modifiers. Will be RT if the task got
* RT-boosted. If not then it returns p->normal_prio.
*/
static int effective_prio(struct task_struct *p)
{
p->normal_prio = normal_prio(p);
/*
* If we are RT tasks or we were boosted to RT priority,
* keep the priority unchanged. Otherwise, update priority
* to the normal priority:
*/
if (!rt_prio(p->prio))
return p->normal_prio;
return p->prio;
}
我们会发现函数首先effective_prio设置了普通优先级, 显然我们用effective_prio同时设置了两个优先级(普通优先级normal_prio和动态优先级prio)
因此计算动态优先级的流程如下
- 设置进程的普通优先级(实时进程99-rt_priority, 普通进程为static_priority)
- 计算进程的动态优先级(实时进程则维持动态优先级的prio不变, 普通进程的动态优先级即为其普通优先级)
最后, 我们综述一下在针对不同类型进程的计算结果
进程类型 | 实时优先级rt_priority | 静态优先级static_prio | 普通优先级normal_prio | 动态优先级prio |
---|---|---|---|---|
EDF调度的实时进程 | rt_priority | 不使用 | MAX_DL_PRIO-1 | 维持原prio不变 |
RT算法调度的实时进程 | rt_priority | 不使用 | MAX_RT_PRIO-1-rt_priority | 维持原prio不变 |
普通进程 | 不使用 | static_prio | static_prio | static_prio |
2.2.1 为什么effective_prio使用优先级数值检测实时进程
t_prio会检测普通优先级是否在实时范围内, 即是否小于MAX_RT_PRIO.参见include/linux/sched/rt.h#L6
代码语言:javascript复制static inline int rt_prio(int prio)
{
if (unlikely(prio < MAX_RT_PRIO))
return 1;
return 0;
}
而前面我们在normal_prio的时候, 则通过task_has_rt_policy来判断其policy属性来确定
代码语言:javascript复制policy == SCHED_FIFO || policy == SCHED_RR;
那么为什么effective_prio重检测实时进程是rt_prio基于优先级数值, 而非task_has_rt_policy或者rt_policy?
对于临时提高至实时优先级的非实时进程来说, 这个是必要的, 这种情况可能发生在是哦那个实时互斥量(RT-Mutex)时.
2.3 设置prio的时机
- 在新进程用wake_up_new_task唤醒时, 或者使用nice系统调用改变其静态优先级时, 则会通过effective_prio的方法设置p->prio
wake_up_new_task(), 计算此进程的优先级和其他调度参数,将新的进程加入到进程调度队列并设此进程为可被调度的,以后这个进程可以被进程调度模块调度执行。
- 进程创建时copy_process通过调用sched_fork来初始化和设置调度器的过程中会设置子进程的优先级
2.4 nice系统调用的实现
nice系统调用是的内核实现是sys_nice, 其定义在kernel/sched/core.c#L7498,
它在通过一系列检测后, 通过set_user_nice函数, 其定义在kernel/sched/core.c#L3497
关于其具体实现我们会在另外一篇博客里面详细讲
2.5 fork时优先级的继承
在进程分叉处子进程时, 子进程的静态优先级继承自父进程. 子进程的动态优先级p->prio则被设置为父进程的普通优先级, 这确保了实时互斥量引起的优先级提高不会传递到子进程.
可以参照sched_fork函数, 在进程复制的过程中copy_process通过调用sched_fork来设置子进程优先级, 参见sched_fork函数
代码语言:javascript复制/*
* fork()/clone()-time setup:
*/
int sched_fork(unsigned long clone_flags, struct task_struct *p)
{
/* ...... */
/*
* Make sure we do not leak PI boosting priority to the child.
* 子进程的动态优先级被设置为父进程普通优先级
*/
p->prio = current->normal_prio;
/*
* Revert to default priority/policy on fork if requested.
* sched_reset_on_fork标识用于判断是否恢复默认的优先级或调度策略
*/
if (unlikely(p->sched_reset_on_fork)) /* 如果要恢复默认的调度策略, 即SCHED_NORMAL */
{
/* 首先是设置静态优先级static_prio
* 由于要恢复默认的调度策略
* 对于父进程是实时进程的情况, 静态优先级就设置为DEFAULT_PRIO
*
* 对于父进程是非实时进程的情况, 要保证子进程优先级不小于DEFAULT_PRIO
* 父进程nice < 0即static_prio < 的重新设置为DEFAULT_PRIO的重新设置为DEFAULT_PRIO
* 父进程nice > 0的时候, 则什么也没做
* */
if (task_has_dl_policy(p) || task_has_rt_policy(p))
{
p->policy = SCHED_NORMAL; /* 普通进程调度策略 */
p->static_prio = NICE_TO_PRIO(0); /* 静态优先级为nice = 0 即DEFAULT_PRIO*/
p->rt_priority = 0; /* 实时优先级为0 */
}
else if (PRIO_TO_NICE(p->static_prio) < 0) /* */
p->static_prio = NICE_TO_PRIO(0); /* */
/* 接着就通过__normal_prio设置其普通优先级和动态优先级
* 这里做了一个优化, 因为用sched_reset_on_fork标识设置恢复默认调度策略后
* 创建的子进程是是SCHED_NORMAL的非实时进程
* 因此就不需要绕一大圈用effective_prio设置normal_prio和prio了
* 直接用__normal_prio设置就可 */
p->prio = p->normal_prio = __normal_prio(p); /* 设置*/
/* 设置负荷权重 */
set_load_weight(p);
/*
* We don't need the reset flag anymore after the fork. It has
* fulfilled its duty:
*/
p->sched_reset_on_fork = 0;
}
/* ...... */
}
3 总结
task_struct采用了四个成员表示进程的优先级:prio和normal_prio表示动态优先级, static_prio表示进程的静态优先级. 同时还用了rt_priority表示实时进程的优先级
字段 | 描述 |
---|---|
static_prio | 用于保存静态优先级, 是进程启动时分配的优先级, ,可以通过nice和sched_setscheduler系统调用来进行修改, 否则在进程运行期间会一直保持恒定 |
prio | 进程的动态优先级, 这个有显示才是调度器重点考虑的进程优先级 |
normal_prio | 普通进程的静态优先级static_prio和调度策略计算出的优先级. 因此即使普通进程和实时进程具有相同的静态优先级, 其普通优先级也是不同的, 进程分叉(fork)时, 子进程会继承父进程的普通优先级, 可以通过normal_prio来计算(非实时进程用static_prIo计算, 实时进程用rt_priority计算) |
rt_priority | 实时进程的静态优先级 |
调度器会考虑的优先级则保存在prio. 由于在某些情况下内核需要暂时提高进程的优先级, 因此需要用prio表示. 由于这些改变不是持久的, 因此静态优先级static_prio和普通优先级normal_prio不受影响.
此外还用了一个字段rt_priority保存了实时进程的优先级静态优先级static_prio(普通进程)和实时优先级rt_priority(实时进程)是计算的起点, 通过他们计算进程的普通优先级normal_prio和动态优先级prio.
内核通过normal_prIo函数计算普通优先级normal_prio
通过effective_prio函数计算动态优先级prio
参考 进程调度之sys_nice()系统调用 linux调度器源码研究 - 概述(一) 深入 Linux 的进程优先级