李飞飞新论文「AI医生」诊断抑郁症,准确率超过80%,可移植到手机端

2018-12-19 16:21:04 浏览数 (1)

郭一璞 假装发自 斯坦福 量子位 报道 | 公众号 QbitAI

在全世界范围内,有超过3亿人患有抑郁症。其中的60%的人都没有接受任何治疗。

我们时有听到名人患抑郁症甚至严重到自杀的消息,却不知周围一些普通人身在病中不知病。

面对这一病症,AI能做些什么?

曾经说过“AI没有国界,AI的福祉亦无边界”的李飞飞老师这次要为那些怀疑自己患抑郁症的人创造福祉了,这次她和团队瞄准了AI诊断抑郁症这个方向:

结合语音识别计算机视觉自然语言处理技术,通过表情和语言诊断一个人是否患了抑郁症

目前,这项研究初见成效,诊断抑郁症的机器学习模型目前precision达到83.3%,recall达到82.6%

并且,这个模型可以部署到手机上,让更多人能方便的诊断抑郁症,不再受困于“没钱”、“没时间”、“别人知道我去查抑郁症会怎么议论我”的阻挠之中。

另外,这项研究成果还入选了 NIPS NeurIPS 2018医疗健康机器学习(ML4H)Workshop。

下面,量子位为大家详细介绍李飞飞这篇新作品的具体内容。

为什么用表情和语言能诊断抑郁症?

因为医生就是这么干的。

在目前的抑郁症诊断过程中,医生需要和患者面对面聊天,来判断对方是否患病。

需要医生来观察的要素包括:

对方是否语调单一,完全不抑扬顿挫;

说话音量是否比较低;

讲话时手势是不是比正常人少;

是不是总爱低头向下看;

……

另外,还需要通过患者健康问卷(PHQ, Patient Health Questionnaire)来调查来了解更详细的信息。

用AI来诊断抑郁症,就相当于用机器学习模型来代替那个和患者对话的医生,把患者在医生面前的表现变成数据,输入机器学习模型中。

因此,李飞飞团队采用的方案是先模型中输入3D面部关键点视频患者说话的音频转成文字的访谈录音三种数据,分别对应下图中的abc三行。

之后,输出PHQ评分或抑郁症分类标签,就能得出此人是否患了抑郁症。

训练模型全过程

训练这个模型用到的是DAIC-WOZ数据集,包括142名患者的PHQ评分和189次临床访谈、总共50小时的数据。

整个模型由两个部分组成。

第一个部分叫句子级嵌入(Sentence-Level Embeddings)。

以往的嵌入方式都是嵌入一个音节或单词,只能捕捉几百毫秒的时间。李飞飞团队用的是整个句子多模态嵌入,可以实现捕捉更长时间的声音、视觉和语言元素。

下图就是多模态句子级嵌入的示例:

第二个部分叫因果卷积网络(C-CNN, Causal Convolutional Networks)。

之所以用因果卷积网络,是因为抑郁症患者说话慢。

相比普通人,抑郁症患者说话的时候会在不同的字词之间停顿更长时间,因此整个句子的音视频也就比较长。处理这种长句子的时候,因果卷积网络要比RNN强。

效果如何

我们来看一下实验结果。

其中,A是指输入数据为音频,V是指输入数据为视频,L是指输入数据为文本。

对比前人的实验结果,李飞飞的这项新研究数据上相对较高。不过,与前人不同的是,这项新研究并不依赖一些预先做好的访谈记录,所以来的背景资料更少。并且,这项新研究无需特征工程,可以直接用输入原始数据。

这张实验结果表格对比了使用不同嵌入方式的结果。其中,前两行是手工嵌入,第3~6行是预训练嵌入,最后两行是我们用到的句子级嵌入,输入的是log-mel光谱图、3D面部关键点视频和Word2Vecs的序列。

传送门

论文: Measuring Depression Symptom Severity from Spoken Language and 3D Facial Expressions Albert Haque, Michelle Guo, Adam S Miner, Li Fei-Fei https://arxiv.org/abs/1811.08592

0 人点赞