Flume Kafka Storm整合
1. 需求:
有一个客户端Client可以产生日志信息,我们需要通过Flume获取日志信息,再把该日志信息放入到Kafka的一个Topic:flume-to-kafka
再由Storm读取该topic:flume-to-kafka,进行日志分析处理(这里我们做的逻辑处理为filter,即过滤日志信息),处理完日志信息后,再由Storm把处理好的日志信息放入到Kafka的另一个topic:storm-to-kafka
2.组件分布情况
我总共搭建了3个节点node1,node2,node3
Zookeeper安装在node1,node2,nod3
Flume安装在node2
Kafka安装在node1,node2,node3
Storm安装在node1,node2,node3
3.JDK安装
代码语言:javascript复制--在node1, node2, node3上面安装jdk
--install JDK -- http://blog.51cto.com/vvxyz/1642258(LInux安装jdk的三种方法)
--解压安装
rpm -ivh your-package.rpm
--修改环境变量
vi /etc/profile
JAVA_HOME=/usr/java/jdk1.7.0_67
JRE_HOME=/usr/java/jdk1.7.0_67/jre
CLASS_PATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
export JAVA_HOME JRE_HOME CLASS_PATH PATH
:wq
--使配置有效
source /etc/profile
4.Zookeeper的安装
代码语言:javascript复制---============================
--解压zookeeper压缩包并安装
tar -zxvf zookeeper-3.4.6.tar.gz
--创建zookeeper的软链
ln -sf /root/zookeeper-3.4.6 /home/zk
--配置zookeeper
cd /home/zk/conf/
--把下面的zoo_sample.cfg文件重新命名
cp zoo_sample.cfg zoo.cfg
--修改zoo.cfg配置文件
vi zoo.cfg
--设置zookeeper的文件存放目录
--找到dataDir=/tmp/zookeeper,并设置为下面值
dataDir=/opt/zookeeper
--设置zookeeper集群
server.1=node1:2888:3888
server.2=node2:2888:3888
server.3=node3:2888:3888
:wq
--创建/opt/zookeeper目录
mkdir /opt/zookeeper
--进入/opt/zookeeper目录
cd /opt/zookeeper
--创建一个文件myid
vi myid
--输入1
1
:wq
--以此类推,在node2,node3,值分别是2, 3
--拷贝zookeeper目录到node2, node3的/opt/目录下面
cd ..
scp -r zookeeper/ root@node2:/opt/
scp -r zookeeper/ root@node3:/opt/
--分别进入到node2, node3里面,修改/opt/zookeeper/myid,值分别是2, 3
--作为以上配置,把node1里面的zookeeper拷贝到node2, node3上面。
scp -r zookeeper-3.4.6 root@node2:~/
scp -r zookeeper-3.4.6 root@node3:~/
--分别进入到node2, node3里面,创建软链
ln -sf /root/zookeeper-3.4.6/ /home/zk
--配置zookeeper环境变量
cd /home/zk/bin
--修改/etc/profile文件,把zookeeper的bin目录路径添加进去
vi /etc/profile
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin:/home/zk/bin
--让配置文件生效
source /etc/profile
--分别进入到node2, node3里面,修改/etc/profile文件,把zookeeper的bin目录路径添加进去
--作为环境变量配置,就可以启动zookeeper了。
--分别在node1, node2, node3上面启动zookeeper
zkServer.sh start
--测试是否启动成功
jps
--观察是否有QuorumPeerMain进程
5.Flume的安装
代码语言:javascript复制---------------------------------------------------
--安装Flume
--把安装包上传到node2上面
cd
tar -zxvf apache-flume-1.6.0-bin.tar.gz
--创建软链
ln -s /root/apache-flume-1.6.0-bin /home/flume
--配置flume
cd /root/apache-flume-1.6.0-bin/conf
cp flume-env.sh.template flume-env.sh
vi flume-env.sh
--配置JDK
export JAVA_HOME=/usr/java/jdk1.7.0_67
:wq
--加入系统变量
vi /etc/profile
export FLUME_HOME=/root/apache-flume-1.6.0-bin
export PATH=$PATH:$FLUME_HOME/bin
:wq
source /etc/profile
--验证是否安装成功
flume-ng version
flume-ng version
Flume 1.6.0
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: 2561a23240a71ba20bf288c7c2cda88f443c2080
Compiled by hshreedharan on Mon May 11 11:15:44 PDT 2015
From source with checksum b29e416802ce9ece3269d34233baf43f
6.Kafka的安装
代码语言:javascript复制---------------------------------------------------
--kafka安装
--在node1, node2, node3上面搭建kafka
--先进入node1
mkdir /root/kafka
--解压
tar -zxvf kafka_2.10-0.8.2.2.tgz
--创建软链
ln -s /root/kafka/kafka_2.10-0.8.2.2 /home/kafka-2.10
--配置
cd /root/kafka/kafka_2.10-0.8.2.2/config
vi server.properties
--node1=0, node2=1,node2=2
broker.id=0
log.dirs=/opt/kafka-log
zookeeper.connect=node1:2181,node2:2181,node3:2181
:wq
--为了启动方便
cd /root/kafka/kafka_2.10-0.8.2.2
vi start-kafka.sh
nohup bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &
:wq
chmod 755 start-kafka.sh
--配置好以后
--分发到node2,node3
cd /root/kafka/
scp -r kafka_2.10-0.8.2.2/ root@node2:/root/kafka
scp -r kafka_2.10-0.8.2.2/ root@node3:/root/kafka
--进入到node2
cd /root/kafka/kafka_2.10-0.8.2.2/config
vi server.properties
--node1=0, node2=1,node2=2
broker.id=1
:wq
--进入到node3
cd /root/kafka/kafka_2.10-0.8.2.2/config
vi server.properties
--node1=0, node2=1,node2=2
broker.id=2
:wq
--启动kafka
./zkServer.sh start
--分别进入node1,node2,node3
cd /root/kafka/kafka_2.10-0.8.2.2
./start-kafka.sh
--检查是否启动
jps
查看是否有Kafka进程
7.Storm的安装
代码语言:javascript复制------------
--Storm分布式安装
--部署到node1,node2,node3节点上
--进入node1
cd /root/apache-storm-0.10.0/conf
vi storm.yaml
--配置如下
# storm.zookeeper.servers:
- "node1"
- "node2"
- "node3"
#
nimbus.host: "node1"
storm.local.dir: "/opt/storm"
supervisor.slots.ports:
- 6700
- 6701
- 6702
- 6703
:wq
--从node1分发到node2,node3
scp -r apache-storm-0.10.0 root@node2:/
scp -r apache-storm-0.10.0 root@node3:/
--分别进入node2,node3创建软链
ln -r /root/apache-storm-0.10.0 /home/storm-0.10
--分别进入node1,node2,node3快捷启动
cd /root/apache-storm-0.10.0
vi start-storm.sh
nohup bin/storm nimbus >> logs/numbus.out 2>&1 &
nohup bin/storm supervisor >> logs/supervisor.out 2>&1 &
--node1上面配置,node2,node3上面不需要UI
nohup bin/storm ui >> logs/ui.out 2>&1 &
nohup bin/storm drpc >> logs/drpc.out 2>&1 &
:wq
--分别进入node1,node2,node3快捷stop-storm
vi stop-storm.sh
--node1上面配置,node2,node3上面不需要UI
kill -9 `jps | grep core | awk '{print $1}'`
kill -9 `jps | grep supervisor | awk '{print $1}'`
kill -9 `jps | grep nimbus | awk '{print $1}'`
kill -9 `jps | grep worker | awk '{print $1}'`
kill -9 `jps | grep LogWriter | awk '{print $1}'`
:wq
chmod 755 start-storm.sh
chmod 755 stop-storm.sh
--启动Zookeeper服务
--在node1,node2,node3上面启动
zkServer.sh start
--在node1,node2,node3上面启动Storm
cd /root/apache-storm-0.10.0
./start-storm.sh
--上传storm_wc.jar 文件
./storm jar /root/storm_wc.jar storm.wordcount.Test wordcount
------------
Storm DRPC 配置
--进入node1
cd /root/apache-storm-0.10.0/conf
vi storm.yaml
drpc.servers:
- "node1"
:wq
--从node1,分发到node2,node3
cd /root/apache-storm-0.10.0/conf/
scp -r root@node2:/root/apache-storm-0.10.0/conf
scp -r root@node3:/root/apache-storm-0.10.0/conf
--配置完,进入node1,node2,node3
cd /root/apache-storm-0.10.0
./start-storm.sh &
8.Flume Kafka Storm整合
8.1.配置Flume
代码语言:javascript复制--从node2
cd flumedir
vi flume_to_kafka
--node2配置如下
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = node2
a1.sources.r1.port = 41414
# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.topic = flume-to-kafka
a1.sinks.k1.brokerList = node1:9092,node2:9092,node3:9092
a1.sinks.k1.requiredAcks = 1
a1.sinks.k1.batchSize = 20
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000000
a1.channels.c1.transactionCapacity = 10000
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
:wq
8.2.启动Zookeeper
代码语言:javascript复制--启动Zookeeper,在node1,node2,node3
--关闭防火墙
service iptables stop
--启动Zookeeper
zkServer.sh start
8.3.启动Kfaka
代码语言:javascript复制--启动kafka
--分别进入node1,node2,node3
cd /root/kafka/kafka_2.10-0.8.2.2
./start-kafka.sh
8.4.启动Flume
代码语言:javascript复制--进入node2,启动
cd /root/flumedir
flume-ng agent -n a1 -c conf -f flume_to_kafka -Dflume.root.logger=DEBUG,console
8.4.启动客户端Client
启动客户端产生日志信息。
大家可以参考RPC clients - Avro and Thrift的代码
代码语言:javascript复制import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.api.RpcClient;
import org.apache.flume.api.RpcClientFactory;
import org.apache.flume.event.EventBuilder;
import java.nio.charset.Charset;
public class MyApp {
public static void main(String[] args) {
MyRpcClientFacade1 client = new MyRpcClientFacade1();
// Initialize client with the remote Flume agent's host and port
client.init("node2", 41414);
// Send 10 events to the remote Flume agent. That agent should be
// configured to listen with an AvroSource.
String sampleData = "Hello ERROR ! ------ Test";
for (int i = 500; i < 505; i ) {
client.sendDataToFlume(sampleData " " i);
System.out.println(sampleData " " i);
}
client.cleanUp();
}
}
class MyRpcClientFacade1 {
private RpcClient client;
private String hostname;
private int port;
public void init(String hostname, int port) {
// Setup the RPC connection
this.hostname = hostname;
this.port = port;
this.client = RpcClientFactory.getDefaultInstance(hostname, port);
// Use the following method to create a thrift client (instead of the
// above line):
// this.client = RpcClientFactory.getThriftInstance(hostname, port);
}
public void sendDataToFlume(String data) {
// Create a Flume Event object that encapsulates the sample data
Event event = EventBuilder.withBody(data, Charset.forName("UTF-8"));
// Send the event
try {
client.append(event);
} catch (EventDeliveryException e) {
// clean up and recreate the client
client.close();
client = null;
client = RpcClientFactory.getDefaultInstance(hostname, port);
// Use the following method to create a thrift client (instead of
// the above line):
// this.client = RpcClientFactory.getThriftInstance(hostname, port);
}
}
public void cleanUp() {
// Close the RPC connection
client.close();
}
}
在eclipse控制台输出的结果是:
代码语言:javascript复制[ WARN ] - [ org.apache.flume.api.NettyAvroRpcClient.configure(NettyAvroRpcClient.java:505) ] Invalid value for batchSize: 0; Using default value.
[ WARN ] - [ org.apache.flume.api.NettyAvroRpcClient.configure(NettyAvroRpcClient.java:634) ] Using default maxIOWorkers
Hello ERROR ! ------ Test 500
Hello ERROR ! ------ Test 501
Hello ERROR ! ------ Test 502
Hello ERROR ! ------ Test 503
Hello ERROR ! ------ Test 504
8.5.查看Kafka的Topic
代码语言:javascript复制--进入node3,查看kafka的topic
cd /home/kafka-2.10/bin
./kafka-topics.sh --zookeeper node1,node2,node3 --list
可以看到,由于客户端代码的执行,Kafka里面的topic:flume-to-kafka被自动创建
8.6.启动Kafka Consumer:flume-to-kafka
我们在这里是查看topic: flume-to-kafka的消费信息
代码语言:javascript复制--进入node3,启动kafka消费者
cd /home/kafka-2.10/bin
./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic flume-to-kafka
控制台输出:
代码语言:javascript复制Hello ERROR ! ------ Test 500
Hello ERROR ! ------ Test 501
Hello ERROR ! ------ Test 502
Hello ERROR ! ------ Test 503
Hello ERROR ! ------ Test 504
8.7.创建Topic:storm-to-kafka
在Kafka里面创建另一个topic:
代码语言:javascript复制--进入node1,创建一个topic:storm-to-kafka
--设置3个partitions
--replication-factor=3
./kafka-topics.sh --zookeeper node1,node2,node3 --create --topic storm-to-kafka --partitions 3 --replication-factor 3
8.8.运行Storm代码
代码语言:javascript复制package storm.logfilter;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import storm.kafka.bolt.KafkaBolt;
import storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;
import storm.kafka.bolt.selector.DefaultTopicSelector;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class LogFilterTopology {
public static class FilterBolt extends BaseBasicBolt {
private static final long serialVersionUID = 1L;
@Override
public void execute(Tuple tuple, BasicOutputCollector collector) {
String line = tuple.getString(0);
// 包含ERROR的行留下
if (line.contains("ERROR")) {
System.err.println("Filter: " line " ~ filtered.");
collector.emit(new Values(line " ~ filtered."));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// 定义message提供给后面FieldNameBasedTupleToKafkaMapper使用
declarer.declare(new Fields("message"));
}
}
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
// https://github.com/apache/storm/tree/master/external/storm-kafka
// config kafka spout,话题
String topic = "flume-to-kafka";
ZkHosts zkHosts = new ZkHosts("node1:2181,node2:2181,node3:2181");
// /MyKafka,偏移量offset的根目录,记录队列取到了哪里
SpoutConfig spoutConfig = new SpoutConfig(zkHosts, topic, "/MyKafka", "MyTrack");
List<String> zkServers = new ArrayList<String>();
for (String host : zkHosts.brokerZkStr.split(",")) {
zkServers.add(host.split(":")[0]);
}
spoutConfig.zkServers = zkServers;
spoutConfig.zkPort = 2181;
// 是否从头开始消费
spoutConfig.forceFromStart = true;
spoutConfig.socketTimeoutMs = 60 * 1000;
// StringScheme将字节流转解码成某种编码的字符串
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);
// set kafka spout
builder.setSpout("kafkaSpout", kafkaSpout, 3);
// set bolt
builder.setBolt("filterBolt", new FilterBolt(), 8).shuffleGrouping("kafkaSpout");
// 数据写出
// set kafka bolt
// withTopicSelector使用缺省的选择器指定写入的topic: storm-to-kafka
// withTupleToKafkaMapper tuple==>kafka的key和message
KafkaBolt kafka_bolt = new KafkaBolt().withTopicSelector(new DefaultTopicSelector("storm-to-kafka"))
.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());
builder.setBolt("kafkaBolt", kafka_bolt, 2).shuffleGrouping("filterBolt");
Config conf = new Config();
// set producer properties.
Properties props = new Properties();
props.put("metadata.broker.list", "node1:9092,node2:9092,node3:9092");
/**
* Kafka生产者ACK机制 0 : 生产者不等待Kafka broker完成确认,继续发送下一条数据 1 :
* 生产者等待消息在leader接收成功确认之后,继续发送下一条数据 -1 :
* 生产者等待消息在follower副本接收到数据确认之后,继续发送下一条数据
*/
props.put("request.required.acks", "1");
props.put("serializer.class", "kafka.serializer.StringEncoder");
conf.put("kafka.broker.properties", props);
conf.put(Config.STORM_ZOOKEEPER_SERVERS, zkServers);
if (args == null || args.length == 0) {
// 本地方式运行
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology("storm-kafka-topology", conf, builder.createTopology());
} else {
// 集群方式运行
conf.setNumWorkers(3);
StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
}
}
}
8.9.启动Kafka Consumer:storm-to-kafka
我们在这里是查看topic: storm-to-kafka的消费信息
代码语言:javascript复制--进入node1,启动kafka消费者
cd /home/kafka-2.10/bin
./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic storm-to-kafka
控制台输出:
代码语言:javascript复制Hello ERROR ! ------ Test 504 ~ filtered.
Hello ERROR ! ------ Test 500 ~ filtered.
Hello ERROR ! ------ Test 501 ~ filtered.
Hello ERROR ! ------ Test 503 ~ filtered.
Hello ERROR ! ------ Test 502 ~ filtered.
========================================================
More reading,and english is important.
I'm Hongte大哥哥大姐姐,觉得有用打赏点哦!你的支持是我最大的动力。谢谢。 Hongten博客排名在100名以内。粉丝过千。 Hongten出品,必是精品
========================================================