GBDT分解形式理解,整理中2018-5-10

2019-01-25 14:02:54 浏览数 (1)

  GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。 GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

  GBDT主要由三个概念组成:Regression Decistion Tree(即DT),Gradient Boosting(即GB),Shrinkage (算法的一个重要演进分枝,目前大部分源码都按该版本实现)。搞定这三个概念后就能明白GBDT是如何工作的,要继续理解它如何用于搜索排序则需要额外理解RankNet概念,之后便功德圆满。下文将逐个碎片介绍,最终把整张图拼出来。

GB:梯度迭代 Gradient Boosting

  好吧,我起了一个很大的标题,但事实上我并不想多讲Gradient Boosting的原理,因为不明白原理并无碍于理解GBDT中的Gradient Boosting。喜欢打破砂锅问到底的同学可以阅读这篇英文wikihttp://en.wikipedia.org/wiki/Gradient_boosted_trees#Gradient_tree_boosting

  Boosting,迭代,即通过迭代多棵树来共同决策。这怎么实现呢?难道是每棵树独立训练一遍,比如A这个人,第一棵树认为是10岁,第二棵树认为是0岁,第三棵树认为是20岁,我们就取平均值10岁做最终结论?–当然不是!且不说这是投票方法并不是GBDT,只要训练集不变,独立训练三次的三棵树必定完全相同,这样做完全没有意义。之前说过,GBDT是把所有树的结论累加起来做最终结论的,所以可以想到每棵树的结论并不是年龄本身,而是年龄的一个累加量。GBDT的核心就在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。比如A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。那么在第二棵树里我们把A的年龄设为6岁去学习,如果第二棵树真的能把A分到6岁的叶子节点,那累加两棵树的结论就是A的真实年龄;如果第二棵树的结论是5岁,则A仍然存在1岁的残差,第三棵树里A的年龄就变成1岁,继续学。这就是Gradient Boosting在GBDT中的意义,简单吧。

DT:回归树 Regression Decision Tree

提起决策树(DT, Decision Tree) 绝大部分人首先想到的就是C4.5分类决策树。但如果一开始就把GBDT中的树想成分类树,那就是一条歪路走到黑,一路各种坑,最终摔得都要咯血了还是一头雾水说的就是LZ自己啊有木有。咳嗯,所以说千万不要以为GBDT是很多棵分类树。决策树分为两大类,回归树和分类树。前者用于预测实数值,如明天的温度、用户的年龄、网页的相关程度;后者用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面。这里要强调的是,前者的结果加减是有意义的,如10岁 5岁-3岁=12岁,后者则无意义,如男 男 女=到底是男是女? GBDT的核心在于累加所有树的结果作为最终结果,就像前面对年龄的累加(-3是加负3),而分类树的结果显然是没办法累加的,所以GBDT中的树都是回归树,不是分类树,这点对理解GBDT相当重要(尽管GBDT调整后也可用于分类但不代表GBDT的树是分类树)。那么回归树是如何工作的呢?

  下面我们以对人的性别判别/年龄预测为例来说明,每个instance都是一个我们已知性别/年龄的人,而feature则包括这个人上网的时长、上网的时段、网购所花的金额等。

  作为对比,先说分类树,我们知道C4.5分类树在每次分枝时,是穷举每一个feature的每一个阈值,找到使得按照feature<=阈值,和feature>阈值分成的两个分枝的熵最大的feature和阈值(熵最大的概念可理解成尽可能每个分枝的男女比例都远离1:1),按照该标准分枝得到两个新节点,用同样方法继续分枝直到所有人都被分入性别唯一的叶子节点,或达到预设的终止条件,若最终叶子节点中的性别不唯一,则以多数人的性别作为该叶子节点的性别。

  回归树总体流程也是类似,不过在每个节点(不一定是叶子节点)都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人年龄的平均值。分枝时穷举每一个feature的每个阈值找最好的分割点,但衡量最好的标准不再是最大熵,而是最小化均方差–即(每个人的年龄-预测年龄)^2 的总和 / N,或者说是每个人的预测误差平方和 除以 N。这很好理解,被预测出错的人数越多,错的越离谱,均方差就越大,通过最小化均方差能够找到最靠谱的分枝依据。分枝直到每个叶子节点上人的年龄都唯一(这太难了)或者达到预设的终止条件(如叶子个数上限),若最终叶子节点上人的年龄不唯一,则以该节点上所有人的平均年龄做为该叶子节点的预测年龄。若还不明白可以Google “Regression Tree”,或阅读本文的第一篇论文中Regression Tree部分。

Shrinkage

  Shrinkage(缩减)的思想认为,每次走一小步逐渐逼近结果的效果,要比每次迈一大步很快逼近结果的方式更容易避免过拟合。即它不完全信任每一个棵残差树,它认为每棵树只学到了真理的一小部分,累加的时候只累加一小部分,通过多学几棵树弥补不足。用方程来看更清晰,即

没用Shrinkage时:(yi表示第i棵树上y的预测值, y(1~i)表示前i棵树y的综合预测值)

y(i 1) = 残差(y1~yi), 其中: 残差(y1~yi) = y真实值 - y(1 ~ i)

y(1 ~ i) = SUM(y1, …, yi)

Shrinkage不改变第一个方程,只把第二个方程改为:

y(1 ~ i) = y(1 ~ i-1) step * yi

  即Shrinkage仍然以残差作为学习目标,但对于残差学习出来的结果,只累加一小部分(step*残差)逐步逼近目标,step一般都比较小,如0.01~0.001(注意该step非gradient的step),导致各个树的残差是渐变的而不是陡变的。直觉上这也很好理解,不像直接用残差一步修复误差,而是只修复一点点,其实就是把大步切成了很多小步。本质上,Shrinkage为每棵树设置了一个weight,累加时要乘以这个weight,但和Gradient并没有关系。这个weight就是step。就像Adaboost一样,Shrinkage能减少过拟合发生也是经验证明的,目前还没有看到从理论的证明。

参考文献: 在此先给出我比较推荐的两篇英文文献,喜欢英文原版的同学可直接阅读:

【1】Boosting Decision Tree入门教程

【2】LambdaMART用于搜索排序入门教程

0 人点赞