聊聊flink的Table Formats

2019-02-04 11:57:56 浏览数 (1)

本文主要研究一下flink的Table Formats

实例

CSV Format

代码语言:javascript复制
.withFormat(
  new Csv()
    .field("field1", Types.STRING)    // required: ordered format fields
    .field("field2", Types.TIMESTAMP)
    .fieldDelimiter(",")              // optional: string delimiter "," by default
    .lineDelimiter("n")              // optional: string delimiter "n" by default
    .quoteCharacter('"')              // optional: single character for string values, empty by default
    .commentPrefix('#')               // optional: string to indicate comments, empty by default
    .ignoreFirstLine()                // optional: ignore the first line, by default it is not skipped
    .ignoreParseErrors()              // optional: skip records with parse error instead of failing by default
)
  • flink内置支持csv format,无需添加额外依赖

JSON Format

代码语言:javascript复制
.withFormat(
  new Json()
    .failOnMissingField(true)   // optional: flag whether to fail if a field is missing or not, false by default
​
    // required: define the schema either by using type information which parses numbers to corresponding types
    .schema(Type.ROW(...))
​
    // or by using a JSON schema which parses to DECIMAL and TIMESTAMP
    .jsonSchema(
      "{"  
      "  type: 'object',"  
      "  properties: {"  
      "    lon: {"  
      "      type: 'number'"  
      "    },"  
      "    rideTime: {"  
      "      type: 'string',"  
      "      format: 'date-time'"  
      "    }"  
      "  }"  
      "}"
    )
​
    // or use the table's schema
    .deriveSchema()
)
  • 可以使用schema或者jsonSchema或者deriveSchema来定义json format,需要额外添加flink-json依赖

Apache Avro Format

代码语言:javascript复制
.withFormat(
  new Avro()
​
    // required: define the schema either by using an Avro specific record class
    .recordClass(User.class)
​
    // or by using an Avro schema
    .avroSchema(
      "{"  
      "  "type": "record","  
      "  "name": "test","  
      "  "fields" : ["  
      "    {"name": "a", "type": "long"},"  
      "    {"name": "b", "type": "string"}"  
      "  ]"  
      "}"
    )
)
  • 可以使用recordClass或者avroSchema来定义Avro schema,需要添加flink-avro依赖

ConnectTableDescriptor

flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/descriptors/ConnectTableDescriptor.scala

代码语言:javascript复制
abstract class ConnectTableDescriptor[D <: ConnectTableDescriptor[D]](
    private val tableEnv: TableEnvironment,
    private val connectorDescriptor: ConnectorDescriptor)
  extends TableDescriptor
  with SchematicDescriptor[D]
  with RegistrableDescriptor { this: D =>
​
  private var formatDescriptor: Option[FormatDescriptor] = None
  private var schemaDescriptor: Option[Schema] = None
​
  //......
​
  override def withFormat(format: FormatDescriptor): D = {
    formatDescriptor = Some(format)
    this
  }
​
  //......
}
  • StreamTableEnvironment的connect方法创建StreamTableDescriptor;StreamTableDescriptor继承了ConnectTableDescriptor;ConnectTableDescriptor提供了withFormat方法,返回FormatDescriptor

FormatDescriptor

flink-table-common-1.7.1-sources.jar!/org/apache/flink/table/descriptors/FormatDescriptor.java

代码语言:javascript复制
@PublicEvolving
public abstract class FormatDescriptor extends DescriptorBase implements Descriptor {
​
    private String type;
​
    private int version;
​
    /**
     * Constructs a {@link FormatDescriptor}.
     *
     * @param type string that identifies this format
     * @param version property version for backwards compatibility
     */
    public FormatDescriptor(String type, int version) {
        this.type = type;
        this.version = version;
    }
​
    @Override
    public final Map<String, String> toProperties() {
        final DescriptorProperties properties = new DescriptorProperties();
        properties.putString(FormatDescriptorValidator.FORMAT_TYPE, type);
        properties.putInt(FormatDescriptorValidator.FORMAT_PROPERTY_VERSION, version);
        properties.putProperties(toFormatProperties());
        return properties.asMap();
    }
​
    /**
     * Converts this descriptor into a set of format properties. Usually prefixed with
     * {@link FormatDescriptorValidator#FORMAT}.
     */
    protected abstract Map<String, String> toFormatProperties();
}
  • FormatDescriptor是个抽象类,Csv、Json、Avro都是它的子类

Csv

flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/descriptors/Csv.scala

代码语言:javascript复制
class Csv extends FormatDescriptor(FORMAT_TYPE_VALUE, 1) {
​
  private var fieldDelim: Option[String] = None
  private var lineDelim: Option[String] = None
  private val schema: mutable.LinkedHashMap[String, String] =
    mutable.LinkedHashMap[String, String]()
  private var quoteCharacter: Option[Character] = None
  private var commentPrefix: Option[String] = None
  private var isIgnoreFirstLine: Option[Boolean] = None
  private var lenient: Option[Boolean] = None
​
  def fieldDelimiter(delim: String): Csv = {
    this.fieldDelim = Some(delim)
    this
  }
​
  def lineDelimiter(delim: String): Csv = {
    this.lineDelim = Some(delim)
    this
  }
​
  def schema(schema: TableSchema): Csv = {
    this.schema.clear()
    schema.getFieldNames.zip(schema.getFieldTypes).foreach { case (n, t) =>
      field(n, t)
    }
    this
  }
​
  def field(fieldName: String, fieldType: TypeInformation[_]): Csv = {
    field(fieldName, TypeStringUtils.writeTypeInfo(fieldType))
    this
  }
​
  def field(fieldName: String, fieldType: String): Csv = {
    if (schema.contains(fieldName)) {
      throw new ValidationException(s"Duplicate field name $fieldName.")
    }
    schema  = (fieldName -> fieldType)
    this
  }
​
  def quoteCharacter(quote: Character): Csv = {
    this.quoteCharacter = Option(quote)
    this
  }
​
  def commentPrefix(prefix: String): Csv = {
    this.commentPrefix = Option(prefix)
    this
  }
​
  def ignoreFirstLine(): Csv = {
    this.isIgnoreFirstLine = Some(true)
    this
  }
​
  def ignoreParseErrors(): Csv = {
    this.lenient = Some(true)
    this
  }
​
  override protected def toFormatProperties: util.Map[String, String] = {
    val properties = new DescriptorProperties()
​
    fieldDelim.foreach(properties.putString(FORMAT_FIELD_DELIMITER, _))
    lineDelim.foreach(properties.putString(FORMAT_LINE_DELIMITER, _))
​
    val subKeys = util.Arrays.asList(
      DescriptorProperties.TABLE_SCHEMA_NAME,
      DescriptorProperties.TABLE_SCHEMA_TYPE)
​
    val subValues = schema.map(e => util.Arrays.asList(e._1, e._2)).toList.asJava
​
    properties.putIndexedFixedProperties(
      FORMAT_FIELDS,
      subKeys,
      subValues)
    quoteCharacter.foreach(properties.putCharacter(FORMAT_QUOTE_CHARACTER, _))
    commentPrefix.foreach(properties.putString(FORMAT_COMMENT_PREFIX, _))
    isIgnoreFirstLine.foreach(properties.putBoolean(FORMAT_IGNORE_FIRST_LINE, _))
    lenient.foreach(properties.putBoolean(FORMAT_IGNORE_PARSE_ERRORS, _))
​
    properties.asMap()
  }
}
  • Csv提供了field、fieldDelimiter、lineDelimiter、quoteCharacter、commentPrefix、ignoreFirstLine、ignoreParseErrors等方法

Json

flink-json-1.7.1-sources.jar!/org/apache/flink/table/descriptors/Json.java

代码语言:javascript复制
public class Json extends FormatDescriptor {
​
    private Boolean failOnMissingField;
    private Boolean deriveSchema;
    private String jsonSchema;
    private String schema;
​
    public Json() {
        super(FORMAT_TYPE_VALUE, 1);
    }
​
    public Json failOnMissingField(boolean failOnMissingField) {
        this.failOnMissingField = failOnMissingField;
        return this;
    }
​
    public Json jsonSchema(String jsonSchema) {
        Preconditions.checkNotNull(jsonSchema);
        this.jsonSchema = jsonSchema;
        this.schema = null;
        this.deriveSchema = null;
        return this;
    }
​
    public Json schema(TypeInformation<Row> schemaType) {
        Preconditions.checkNotNull(schemaType);
        this.schema = TypeStringUtils.writeTypeInfo(schemaType);
        this.jsonSchema = null;
        this.deriveSchema = null;
        return this;
    }
​
    public Json deriveSchema() {
        this.deriveSchema = true;
        this.schema = null;
        this.jsonSchema = null;
        return this;
    }
​
    @Override
    protected Map<String, String> toFormatProperties() {
        final DescriptorProperties properties = new DescriptorProperties();
​
        if (deriveSchema != null) {
            properties.putBoolean(FORMAT_DERIVE_SCHEMA, deriveSchema);
        }
​
        if (jsonSchema != null) {
            properties.putString(FORMAT_JSON_SCHEMA, jsonSchema);
        }
​
        if (schema != null) {
            properties.putString(FORMAT_SCHEMA, schema);
        }
​
        if (failOnMissingField != null) {
            properties.putBoolean(FORMAT_FAIL_ON_MISSING_FIELD, failOnMissingField);
        }
​
        return properties.asMap();
    }
}
  • Json提供了schema、jsonSchema、deriveSchema三种方式来定义json format

Avro

flink-avro-1.7.1-sources.jar!/org/apache/flink/table/descriptors/Avro.java

代码语言:javascript复制
public class Avro extends FormatDescriptor {
​
    private Class<? extends SpecificRecord> recordClass;
    private String avroSchema;
​
    public Avro() {
        super(AvroValidator.FORMAT_TYPE_VALUE, 1);
    }
​
    public Avro recordClass(Class<? extends SpecificRecord> recordClass) {
        Preconditions.checkNotNull(recordClass);
        this.recordClass = recordClass;
        return this;
    }
​
    public Avro avroSchema(String avroSchema) {
        Preconditions.checkNotNull(avroSchema);
        this.avroSchema = avroSchema;
        return this;
    }
​
    @Override
    protected Map<String, String> toFormatProperties() {
        final DescriptorProperties properties = new DescriptorProperties();
​
        if (null != recordClass) {
            properties.putClass(AvroValidator.FORMAT_RECORD_CLASS, recordClass);
        }
        if (null != avroSchema) {
            properties.putString(AvroValidator.FORMAT_AVRO_SCHEMA, avroSchema);
        }
​
        return properties.asMap();
    }
}
  • Avro提供了recordClass、avroSchema两种方式来定义avro format

小结

  • StreamTableEnvironment的connect方法创建StreamTableDescriptor;StreamTableDescriptor继承了ConnectTableDescriptor
  • ConnectTableDescriptor提供了withFormat方法,返回FormatDescriptor;FormatDescriptor是个抽象类,Csv、Json、Avro都是它的子类
  • Csv提供了field、fieldDelimiter、lineDelimiter、quoteCharacter、commentPrefix、ignoreFirstLine、ignoreParseErrors等方法;Json提供了schema、jsonSchema、deriveSchema三种方式来定义json format;Avro提供了recordClass、avroSchema两种方式来定义avro format

doc

  • Table Formats

0 人点赞