一文读懂人工智能、机器学习、深度学习、强化学习的关系(必看)

2019-02-18 11:17:23 浏览数 (1)

近些年,人工智能的热度都维持在一定的高度。从Google AlphaGo到Chatbot聊天机器人、智能理专、精准医疗、机器翻译等,人工智能技术被应用于安防、医疗、家居、交通、智慧城市等各行各业,其前景是毋庸置疑的,未来绝对是一个万亿级市场。

人工智能是下一次工业革命的核心力量,它企图了解智能的实质,并以科技诠释人类的生活,目前最流行的深度学习技术占据着人工智能最新成果的核心领域,机器人开发、语音识别、图像识别、自然语言处理和专家系统等不断推陈出新,可以设想,未来由人工智能塑造的科技产品,将会是人类智慧的“容器”。《国务院关于印发新一代人工智能发展规划的通知》(国发[2017]35号)的发布,明确了人工智能产业将成为新的重要经济增长点,中国将成为世界主要人工智能创新中心。

根据应用领域的不同,人工智能研究的技术也不尽相同,目前以机器学习、计算机视觉等成为热门的AI技术方向。 但是大家在关注或研究人工智能领域的时候,总是会遇到这样的几个关键词:人工智能、机器学习、深度学习、强化学习。那么四者之间是什么关系呢?

来看下面一张图:

人工智能: 以电脑解决问题

人工智能比喻成的孩子大脑,机器学习就是让孩子去掌握认知能力的过程,而深度学习是这过程中很有效率的一种教学体系。人工智能是目的,是结果;深度学习、机器学习是方法,是工具。

机器学习:一种实现人工智能的方法

机器学习是人工智能的一种途径或子集,它强调“学习”而不是计算机程序。一台机器使用复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测——不需要人在机器的软件中编写特定的指令。在错误地将奶油泡芙当成橙子之后,系统的模式识别会随着时间的推移而不断改进,因为它会像人一样从错误中吸取教训并纠正自己。通过机器学习,一个系统可以从自身的错误中学习来提高它的模式识别能力。

深度学习:一种实现机器学习的技术

深度学习是一种特殊的机器学习,深度学习适合处理大数据,而数据量比较小的时候,用传统机器学习方法也许更合适。深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。

深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

机器学习中除了深度学习还有一个非常重要的强化学习

过去十年中,强化学习的大部分应用都在电子游戏方面。最新的强化学习算法在经典和现代游戏中取得了很不错的效果,在有些游戏中还以较大优势击败了人类玩家。未来强化学习在医疗和教育方面有望得到很高的应用。

0 人点赞