Codeforces Round 942 (Div. 2)

2024-09-23 17:22:29 浏览数 (1)

比赛链接:Dashboard - Codeforces Round 942 (Div. 2) - Codeforces
A题
翻译中文题面:

一场比赛包含 n 个问题,第 i 个问题的难度预期最多为 bi。已经有 n 个问题的提议,第 i 个问题的难度是 ai。最初,数组 a1,a2,…,an 和 b1,b2,…,bn 按非递减顺序排序。 一些问题可能比预期更难,所以写手必须提出更多问题。当提出难度为 w 的新问题时,最难的问题将被删除,问题将按非递减的难度排序。 换句话说,在每个操作中,你选择一个整数 w,将其插入数组 a,按非递减顺序排序数组 a,并从中删除最后一个元素。 找到使 ai≤bi 对所有 i 成立的新问题的最小数量。 输入 每个测试包含多个测试用例。第一行包含测试用例的数量 t(1≤t≤100)。以下是测试用例的描述。 每个测试用例的第一行仅包含一个正整数 n(1≤n≤100),表示问题的数量。 每个测试用例的第二行包含长度为 n 的数组 a(1≤a1≤a2≤⋯≤an≤109)。 每个测试用例的第三行包含长度为 n 的数组 b(1≤b1≤b2≤⋯≤bn≤109)。 输出 对于每个测试用例,在新行中打印一个整数作为你的答案。

解题思路:

在a数组中寻找到第一个不满足的数,把它替换成数组b中的数即可。

AC代码:
代码语言:javascript复制
#include<iostream>
using namespace std;
const int N=105;
int n,t;
int a[N],b[N];
int cheak(int a[],int b[]){//判断a数组任意一个数是否小于b数组对应位置的数
	for(int i=0;i<n;i  ){
		if(a[i]>b[i]){
			return i;
		}
	}
	return -1;
}
int main(){
	cin>>t;
	while(t--){
		cin>>n;
		int sum=0;
		for(int i=0;i<n;i  ){
			cin>>a[i];
		}
		for(int i=0;i<n;i  ){
			cin>>b[i];
		}
		while(cheak(a,b)!=-1){
			int dep=cheak(a,b);//记录下标
			for(int i=n-1;i>=dep;i--){//数组右移
				a[i 1]=a[i];
			}
			a[dep]=b[dep];//替换
			sum  ;
		}
		cout<<sum<<endl;
	}
	return 0;
}
B题:
翻译中文题面:

在桌子上有 n 枚硬币组成一个圆圈,每枚硬币都可能正面朝上或者背面朝上。Alice 和 Bob 轮流玩以下游戏,Alice 先开始。 在每一步操作中,玩家选择一枚正面朝上的硬币,移除该硬币,并翻转其相邻的两枚硬币。如果(在操作之前)只剩下两枚硬币,则一枚会被移除,另一枚不会被翻转(因为它将被翻转两次)。如果(在操作之前)只剩下一枚硬币,则不会翻转任何硬币。如果(在操作之前)没有正面朝上的硬币,则玩家输掉游戏。 决定在他们都以最优方式玩游戏时谁将赢得游戏。可以证明游戏将在有限步数内结束,其中一个玩家将获胜。 输入 每个测试包含多个测试用例。第一行包含测试用例的数量 t(1≤t≤100)。以下是测试用例的描述。 每个测试用例的第一行仅包含一个正整数 n(1≤n≤100),表示硬币的数量。 每个测试用例的第二行包含一个长度为 n 的字符串 s,其中只包含 "U" 和 "D",表示每枚硬币是正面朝上还是背面朝上。 输出 对于每个测试用例,如果 Alice 将赢得游戏,则打印 "YES",否则打印 "NO"。 你可以以任何大小写形式输出答案。例如,字符串 "yEs"、"yes"、"Yes" 和 "YES" 都将被识别为肯定响应。

解题思路:

hhh,当你看完样例你就知道这是奇偶问题,当U的数量为奇数,Alice 将赢得游戏,偶数Bob赢得游戏。

AC代码:
代码语言:javascript复制
#include<iostream>
#include<cstring>
using namespace std;
string s;
int t,n;
int main(){
	cin>>t;
	while(t--){
		cin>>n;
		int sumu=0;
		cin>>s;
		for(int i=0;i<s.size();i  ){
			if(s[i]=='U')sumu  ;
		}
		cout<<(sumu%2==0?"NO":"YES")<<endl;
	}
	return 0;
}
C题:
翻译中文题面:

你有一些卡片。每张卡片上都写着一个介于 1 和 n 之间的整数:具体来说,从 1 到 n 的每张 i ,你们有 ai 张写着数字 i 的卡片。

还有一个商店,里面有无限量的各种类型的卡片。您有 k 枚金币,因此您总共可以购买 k 张新卡片,您购买的卡片可以包含 1 到 n 之间的任意整数。

买完新牌后,你要将所有牌重新排列成一行。重新排列的得分是长度为 n 的(连续)子数组的数量,这些子数组是 [1, 2, ..., n] 的排列组合。你能得到的最高分是多少?

输入

每个测试包含多个测试用例。第一行包含测试用例的数量 t (1<=t<=100) 。测试用例说明如下。

每个测试用例的第一行包含两个整数 n , k ( 1<= n <=2 *10^5 , 0<=k<=10^12 )不同类型纸牌的数量和硬币的数量。

每个测试用例的第二行包含 n 个整数 a1, a2, ..., an ( 1<=ai <=10^12 ) 开始时拥有的 i 类型的纸牌数量。

保证所有测试用例中 n 的总和不超过 5 *10^5 。

输出

对于每个测试用例,输出一行包含一个整数的数据:你能得到的最大分数。

解题思路:

这个问题看上去是一个数的排列问题,无非就是求一个组合排列,里面有多少个[1--n]的组合数,看完给的测试数据之后,从第三组测试样例来看,3 4 6 1 8,我们可以看出来主要贡献最大分数的还是数字2(1个),这就说明了这个一组合要得到最大的分数,那就要看短板,这就相当于木桶效应,能乘多少水取决于木桶里面最短的一个木板。这个样例中数字1(6个)数字2(1个)数字3(8个),最少的是数字2,无论咋样组合,数字2只有一个,最多只能有两种组合(数字2左边组合,右边组合),那么我们有k枚金币,可以去买不同的数,那就要买这堆数里面最少的那个数,比如1 6 8,先把数字1买到跟数字2一样6个,再往后让数字1跟数字2买到跟数字3相同8个,再多了就三个一组一起买,所求的分数如何算。(a[i] k/i)*n n-i k%i-n 1为了方便写在纸上,如下图:

AC代码:
代码语言:javascript复制
#include<bits/stdc  .h>
using namespace std;
const int N=5e5 5;
int t,n;
long long k,a[N];
int main(){
	scanf("%d",&t);
	while(t--){
		scanf("%d %lld",&n,&k);
		for(int i=1;i<=n;i  ){
			scanf("%lld",&a[i]);
		}
		sort(a 1,a n 1);//排序方便金币购买
		for(int i=1;i<=n;i  ){
			if(i<n&&k>=(a[i 1]-a[i])*i){//金币足够买到与下一个数相同的个数
				k-=(a[i 1]-a[i])*i;
			}
			else{
				printf("%lldn",max(0ll,(a[i] k/i)*n n-i k%i-n 1));
                //由于涉及到减法,防止答案为负数,与0取最大值
				break;
			}
		}
	}
	return 0;
} 
D1题:
翻译中文题面:

两个版本的问题不同。您可能需要同时阅读两个版本。只有两个版本的问题都解决了,您才能进行破解。

给你两个正整数 n , m 。

计算满足以下条件的有序数对 (a, b) 的个数:

- 1<=a<=n , 1<=b<=m ; - a b 是 b *gcd(a,b) 的倍数。

输入

每个测试包含多个测试用例。第一行包含测试用例的数量 t ( 1<=t<=10^4 )。测试用例说明如下。

每个测试用例的第一行包含两个整数 n , m (1<=n,m<=2 *10^6 )。

保证所有测试用例中 n 和 m 的总和不超过 2 *10^6 。

输出

为每个测试用例打印一个整数:有效配对的数量。

在第一个测试案例中,只有 (1,1) 满足条件。

在第四个测试用例中, (1,1),(2,1),(2,2),(3,1),(4,1),(5,1),(6,1),(6,2),(6,3),(7,1),(8,1),(9,1),(10,1),(10,2) 满足条件。

解题思路:
AC代码:
代码语言:javascript复制
#include<iostream>
using namespace std;
typedef long long ll;
int n,m,t;
ll ans;
int main(){
	cin>>t;
	while(t--){
		cin>>n>>m;
		ans=0;
		for(int i=1;i<=m;i  ){
			ans =(n i)/(1ll*i*i);
		}
		cout<<ans-1<<endl;
	}
	return 0;
}
D2题:
翻译中文题面:

两个版本的问题不同。您可能需要同时阅读两个版本。只有两个版本的问题都解决了,您才能进行破解。

给你两个正整数 n , m 。

计算满足以下条件的有序数对 (a, b) 的个数:

- 1<=a<=n, 1<=b<=m ; - b*gcd(a,b) 是 a b的倍数。

解题思路:

与上一个D1题倒过来了,假设都与上一个题一样的思路。这里粘一个官方题解。

AC代码:
代码语言:javascript复制
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int t,n,m;
int main(){
	cin>>t;
	while(t--){
		cin>>n>>m;
		int ans=0;
		for(int i=1;i<=sqrt(n);i  ){
			for(int j=1;j<=sqrt(m);j  ){
				if(__gcd(i,j)==1){
					ans  = min(n/(i*(i j)),m/(j*(i j)));
				}
			}
		}
		cout<<ans<<"n";
	}
	return 0;
}

0 人点赞