标题:殖民地
带着殖民扩张的野心,Pear和他的星际舰队登上X星球的某平原。为了评估这块土地的潜在价值,Pear把它划分成了M*N格,每个格子上用一个整数(可正可负)表示它的价值。Pear要做的事很简单——选择一些格子,占领这些土地,通过建立围栏把它们和其它土地隔开。对于M*N的格子,一共有(M 1)*N M*(N 1)条围栏,即每个格子都有上下左右四个围栏;不在边界上的围栏被相邻的两个格子公用。大概如下图【p1.png】所示
图1
图中,蓝色的一段是围栏,属于格子1和2;红色的一段是围栏,属于格子3和4。每个格子有一个可正可负的收益,而建围栏的代价则一定是正的。
你需要选择一些格子,然后选择一些围栏把它们围起来,使得所有选择的格子和所有没被选的格子严格的被隔开。选择的格子可以不连通,也可以有“洞”,即一个连通块中间有一些格子没选。注意,若中间有“洞”,那么根据定义,“洞”和连通块也必须被隔开。Pear的目标很明确,
花最小的代价,获得最大的收益。
【输入数据】
输入第一行两个正整数M N,表示行数和列数。
接下来M行,每行N个整数,构成矩阵A,A[i,j]表示第i行第j列格子的价值。
接下来M 1行,每行N个整数,构成矩阵B,B[i,j]表示第i行第j列上方的围栏建立代价。
特别的,B[M 1,j]表示第M行第j列下方的围栏建立代价。
接下来M行,每行N 1个整数,构成矩阵C,C[i,j]表示第i行第j列左方的围栏建立代价。
特别的,C[i,N 1]表示第i行第N列右方的围栏建立代价。
【输出数据】
一行。只有一个正整数,表示最大收益。
【输入样例1】
3 3
65 -6 -11
15 65 32
-8 5 66
4 1 6
7 3 11
23 21 22
5 25 22
26 1 1 13
16 3 3 4
6 3 1 2
程序应当输出:
123
【输入样例2】
6 6
72 2 -7 1 43 -12
74 74 -14 35 5 3
31 71 -12 70 38 66
40 -6 8 52 3 78
50 11 62 20 -6 61
76 55 67 28 -19 68
25 4 5 8 30 5
9 20 29 20 6 18
3 19 20 11 5 15
10 3 19 23 6 24
27 8 16 10 5 22
28 14 1 5 1 24
2 13 15 17 23 28
24 11 27 16 12 13 27
19 15 21 6 21 11 5
2 3 1 11 10 20 9
8 28 1 21 9 5 7
16 20 26 2 22 5 12
30 27 16 26 9 6 23
程序应当输出
870
【数据范围】
对于20%的数据,M,N<=4
对于50%的数据,M,N<=15
对于100%的数据,M,N<=200
A、B、C数组(所有的涉及到的格子、围栏输入数据)绝对值均不超过1000。根据题意,A数组可正可负,B、C数组均为正整数。