谷歌全新发布Cloud AutoML,预计的语音、图像、NLP、翻译等系列服务中,首先发布的是AutoML Vision,任何人都能上传图片,然后让谷歌的系统自动为他们创建机器学习模型。李飞飞在Twitter连发两条信息说:“在短短的几个月里,将尖端技术转化为数百万的产品,这是一个相当鼓舞人心的旅程!我们希望AutoML Vision是我们客户的第一选择。”
李佳在朋友圈中称:今天我们 CloudAI 团队推出了 Cloud AutoML, 自动生成 ML 模型的技术。这是飞飞和我加入谷歌云以来的一个里程碑。迄今为止,我们团队推出了 10 多个 AI 产品,超过一万家公司在使用我们的产品。感恩团队的辛勤工作推动 AI 产品和技术发展!Cloud AutoML 是我们在推广 AI 技术的新尝试,为没有 ML 专业背景的公司量身打造。AI 赋能,愿更多的人能被 AI 惠及!
李飞飞和李佳:Cloud AutoML,让AI赋能每家企业!
一年前我们加入 Google Cloud 时,就致力于 AI 民主化。我们的目标是降低入门门槛,使尽可能多的开发者、研究者和企业能够使用 AI。
谷歌云 AI 团队一直朝着这个目标前进,也做出了一些成绩。2017 年,我们发布 Google Cloud Machine Learning Engine,帮助具备机器学习专业知识的开发者轻松构建可在任意类型和规模的数据上运行的 ML 模型。我们展示了如何在预训练模型上构建现代机器学习服务,包括视觉、语音、NLP、翻译和 Dialogflow API,为商业应用带来更大的规模和更快的速度。我们的数据科学家和 ML 研究者社区 Kaggle 不断发展,现已有超过 100 万成员。今天,超过一万家企业在使用谷歌云 AI 服务,包括 Box、Rolls Royce Marine、Kewpie 和 Ocado。
但是我们还可以做得更多。目前,只有少数企业具备应用 ML 和 AI 进展的人才和财力。能够创建先进机器学习模型的人非常有限。而且即使你的公司里有 ML/AI 工程师,你仍然必须管控构建定制化 ML 模型所需的时间和复杂流程。尽管谷歌提供可用于多项具体任务的 API,提供预训练机器学习模型,但要实现「AI 人人可用」仍然有很长的路要走。
为了缩小差距,使每家公司都可以使用 AI,我们发布 Cloud AutoML。Cloud AutoML 使用谷歌的 learning2learn 和迁移学习等先进技术,帮助 ML 专业知识有限的公司构建高质量定制化模型。我们相信 Cloud AutoML 将帮助 AI 专家更加高产,不断拓展 AI 的新领域,帮助经验不足的工程师构建梦寐以求的强大 AI 系统。
我们发布的第一个 Cloud AutoML 是 Cloud AutoML Vision,帮助更快、更容易地构建图像识别 ML 模型。可拖放的界面使上传图像、训练管理模型,以及直接在谷歌云上部署训练模型变得更加容易。使用 Cloud AutoML Vision 分类 ImageNet 和 CIFAR 等流行的公开数据集的实践表明它比普通的 ML API 准确率更高,误分类更少。
以下是Cloud AutoML Vision的更多信息:
更高的准确性:Cloud AutoML Vision基于谷歌领先的图像识别方法,包括迁移学习和神经架构搜索技术。这意味着即使你的公司机器学习专业有限,也可以得到更准确的模型。
Production-ready模型的周转时间更快:使用Cloud AutoML,你可以在几分钟内创建一个简单的模型试行你的AI应用程序,或者在一天内构建完整的production-ready模型。
易于使用:AutoML Vision有了一个简单的图形用户界面,可让你指定数据,然后将数据转换为针对你的特定需求定制的高质量模型。