声明
使用的spark是2.0.1,hive是1.2.1,hbase是1.2.4,hadoop是2.6.0,zookeeper是3.4.9
各依赖安装这里不再赘述,如需要可自行查看以前博客或百度,这里着重说明如何配置。
hbase
hbase不需要特殊配置,正常启动即可。
hadoop
hadoop不需要也属配置,正常启动即可。
hive
编辑hive-env.sh,增加HBASE_HOME变量
代码语言:javascript复制# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Set Hive and Hadoop environment variables here. These variables can be used
# to control the execution of Hive. It should be used by admins to configure
# the Hive installation (so that users do not have to set environment variables
# or set command line parameters to get correct behavior).
#
# The hive service being invoked (CLI/HWI etc.) is available via the environment
# variable SERVICE
# Hive Client memory usage can be an issue if a large number of clients
# are running at the same time. The flags below have been useful in
# reducing memory usage:
#
# if [ "$SERVICE" = "cli" ]; then
# if [ -z "$DEBUG" ]; then
# export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xms10m -XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX: UseParNewGC -XX:-UseGCOverheadLimit"
# else
# export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xms10m -XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX:-UseGCOverheadLimit"
# fi
# fi
# The heap size of the jvm stared by hive shell script can be controlled via:
#
# export HADOOP_HEAPSIZE=1024
#
# Larger heap size may be required when running queries over large number of files or partitions.
# By default hive shell scripts use a heap size of 256 (MB). Larger heap size would also be
# appropriate for hive server (hwi etc).
# Set HADOOP_HOME to point to a specific hadoop install directory
export HADOOP_HOME=${HADOOP_HOME}
export HBASE_HOME=/opt/hbase/hbase-1.2.4
# export HIVE_CLASSPATH=$HIVE_CLASSPATH:/opt/hive/apache-hive-1.2.1-bin/lib/*
# Hive Configuration Directory can be controlled by:
export HIVE_CONF_DIR=${HIVE_HOME}/conf
# Folder containing extra ibraries required for hive compilation/execution can be controlled by:
# export HIVE_AUX_JARS_PATH=
编辑hive-site.xml,增加hbase相关配置
代码语言:javascript复制<property>
<name>hbase.zookeeper.quorum</name>
<value>hadoop-n,hadoop-d1,hadoop-d2</value>
</property>
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
<description>
Property from ZooKeeper's config zoo.cfg.
The port at which the clients will connect.
</description>
</property>
<property>
<name>hbase.master</name>
<value>hadoop-n:60000</value>
</property>
spark
拷贝hbase安装目录下的如下jar,注意不要偷懒在spark-env.sh增加hbase的classpath,那样会导致spark无法启动。
代码语言:javascript复制hbase-protocol
hbase-common
hbase-client
hbase-server
hive-hbase-handler-2.1.0
htrace-core
metrice-core
测试
1、在hbase建表,并增加三条数据
代码语言:javascript复制create 'hbase_test',{NAME=>'cf1'}
put 'hbase_test','a','cf1:v1','1'
put 'hbase_test','b','cf1:v1','2'
put 'hbase_test','b','cf1:v1','3'
2、在hive建表
代码语言:javascript复制create external table hbase_test(key string,value string)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:v1")
TBLPROPERTIES("hbase.table.name" = "hbase_test");
3、启动sparksql
代码语言:javascript复制cd $SPAR_HOME/bin
./spark-sql
代码语言:javascript复制spark-sql> select * from hbase_test;
16/11/18 11:20:48 INFO execution.SparkSqlParser: Parsing command: select * from hbase_test
16/11/18 11:20:49 INFO parser.CatalystSqlParser: Parsing command: string
16/11/18 11:20:49 INFO parser.CatalystSqlParser: Parsing command: string
16/11/18 11:20:49 INFO parser.CatalystSqlParser: Parsing command: string
16/11/18 11:20:49 INFO parser.CatalystSqlParser: Parsing command: string
16/11/18 11:20:49 INFO memory.MemoryStore: Block broadcast_7 stored as values in memory (estimated size 222.0 KB, free 365.5 MB)
16/11/18 11:20:49 INFO memory.MemoryStore: Block broadcast_7_piece0 stored as bytes in memory (estimated size 21.4 KB, free 365.5 MB)
16/11/18 11:20:49 INFO storage.BlockManagerInfo: Added broadcast_7_piece0 in memory on 10.5.3.100:39358 (size: 21.4 KB, free: 366.2 MB)
16/11/18 11:20:49 INFO spark.SparkContext: Created broadcast 7 from processCmd at CliDriver.java:376
16/11/18 11:20:50 INFO hbase.HBaseStorageHandler: Configuring input job properties
16/11/18 11:20:50 INFO zookeeper.RecoverableZooKeeper: Process identifier=hconnection-0x165634aa connecting to ZooKeeper ensemble=localhost:2181
16/11/18 11:20:50 INFO zookeeper.ZooKeeper: Initiating client connection, connectString=localhost:2181 sessionTimeout=90000 watcher=hconnection-0x165634aa0x0, quorum=localhost:2181, baseZNode=/hbase
16/11/18 11:20:50 INFO zookeeper.ClientCnxn: Opening socket connection to server localhost/127.0.0.1:2181. Will not attempt to authenticate using SASL (unknown error)
16/11/18 11:20:50 INFO zookeeper.ClientCnxn: Socket connection established to localhost/127.0.0.1:2181, initiating session
16/11/18 11:20:50 INFO zookeeper.ClientCnxn: Session establishment complete on server localhost/127.0.0.1:2181, sessionid = 0x158751d4c19000d, negotiated timeout = 40000
16/11/18 11:20:50 INFO util.RegionSizeCalculator: Calculating region sizes for table "hbase_test".
16/11/18 11:20:50 INFO client.ConnectionManager$HConnectionImplementation: Closing master protocol: MasterService
16/11/18 11:20:50 INFO client.ConnectionManager$HConnectionImplementation: Closing zookeeper sessionid=0x158751d4c19000d
16/11/18 11:20:50 INFO zookeeper.ZooKeeper: Session: 0x158751d4c19000d closed
16/11/18 11:20:50 INFO zookeeper.ClientCnxn: EventThread shut down
16/11/18 11:20:50 INFO spark.SparkContext: Starting job: processCmd at CliDriver.java:376
16/11/18 11:20:50 INFO scheduler.DAGScheduler: Got job 3 (processCmd at CliDriver.java:376) with 1 output partitions
16/11/18 11:20:50 INFO scheduler.DAGScheduler: Final stage: ResultStage 4 (processCmd at CliDriver.java:376)
16/11/18 11:20:50 INFO scheduler.DAGScheduler: Parents of final stage: List()
16/11/18 11:20:50 INFO scheduler.DAGScheduler: Missing parents: List()
16/11/18 11:20:50 INFO scheduler.DAGScheduler: Submitting ResultStage 4 (MapPartitionsRDD[23] at processCmd at CliDriver.java:376), which has no missing parents
16/11/18 11:20:50 INFO memory.MemoryStore: Block broadcast_8 stored as values in memory (estimated size 15.2 KB, free 365.5 MB)
16/11/18 11:20:50 INFO memory.MemoryStore: Block broadcast_8_piece0 stored as bytes in memory (estimated size 8.3 KB, free 365.5 MB)
16/11/18 11:20:50 INFO storage.BlockManagerInfo: Added broadcast_8_piece0 in memory on 10.5.3.100:39358 (size: 8.3 KB, free: 366.2 MB)
16/11/18 11:20:50 INFO spark.SparkContext: Created broadcast 8 from broadcast at DAGScheduler.scala:1012
16/11/18 11:20:50 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 4 (MapPartitionsRDD[23] at processCmd at CliDriver.java:376)
16/11/18 11:20:50 INFO scheduler.TaskSchedulerImpl: Adding task set 4.0 with 1 tasks
16/11/18 11:20:50 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 4.0 (TID 4, 10.5.3.101, partition 0, ANY, 5544 bytes)
16/11/18 11:20:50 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task 4 on executor id: 1 hostname: 10.5.3.101.
16/11/18 11:20:50 INFO storage.BlockManagerInfo: Added broadcast_8_piece0 in memory on 10.5.3.101:57818 (size: 8.3 KB, free: 366.3 MB)
16/11/18 11:20:50 INFO storage.BlockManagerInfo: Added broadcast_7_piece0 in memory on 10.5.3.101:57818 (size: 21.4 KB, free: 366.3 MB)
16/11/18 11:20:51 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 4.0 (TID 4) in 509 ms on 10.5.3.101 (1/1)
16/11/18 11:20:51 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool
16/11/18 11:20:51 INFO scheduler.DAGScheduler: ResultStage 4 (processCmd at CliDriver.java:376) finished in 0.511 s
16/11/18 11:20:51 INFO scheduler.DAGScheduler: Job 3 finished: processCmd at CliDriver.java:376, took 0.611485 s
a 1
b 2
c 3
Time taken: 2.33 seconds, Fetched 3 row(s)
16/11/18 11:20:51 INFO CliDriver: Time taken: 2.33 seconds, Fetched 3 row(s)
spark-sql>
注意
由于本例全部依赖都安装在三台虚拟机上,并且每台只有2G内存,故只能用作软件流程测试,而不能用做性能测试,本文所列所有数据,不能做性能测试的依据。