首先应当明确的是,深度学习是机器学习中的一个领域。然而与传统机器学习所不同的是,传统的机器学习的重点在于特征的设计。在设计过特征之后,就变成了研究如何调整权重、优化参数来得到一个最优的结果。
然而特征设计所涉及的知识、经验的储备往往只有博士级别的研究人员才能够得心应手,而且特征设计的优劣往往直接影响最终的分类结果。与之相反,深度学习应用的是多层特征学习,其中特征学习指的是计算机能够自动地学习到特征的表示,这就解决了手工选择特征局限性较大的问题。深度学习提供了一个近乎统一的框架。它够表达各种信息,能够自动学习,并且非常灵活。这个框架也同样支持监督学习与非监督学习两种学习方式。