3 预备知识和符号约定
如果你已经学习了机器学习课程(如我在Coursera上的Machine Learning MOOC),或者你拥有应用监督式学习的经验,你应该可以理解下面的内容。 我假设你熟悉监督式学习(supervised learning): 使用带有标签的训练样例(x,y)学习一个从x映射到y的函数。监督式学习包括线性回归(linear regression),逻辑回归(logistic regression)和神经网络(neural networks)。机器学习的形式有很多种,但今天大多数的机器学习应用都是监督式学习。 我会经常提到神经网络(neural networks)(也被称为“深度学习(deep learning)”),而你只需要对他们有一个基本的了解即可。 如果你对这里提到的概念不是很熟悉,你可以看一下Coursera上面的Machine Learning课程(课程网址: http://ml-class.org)前三周的视频。